期刊文献+

跌倒检测在远程健康监管系统中的应用研究 被引量:5

Application research of fall detection in remote health care and supervisory system
下载PDF
导出
摘要 利用三轴加速度传感器对人体活动产生的加速度信号进行采集,提出了将数据分析分割成用户终端信号的预处理和在后台处理两部分。在用户终端采取基于1-class SVM分类算法对疑似数据进行提取,在后台通过分析不同动作事件下其能量损耗的阈值范围的不同进行跌倒判断,并分析了人体在特定时域的速度、位移以及倾角作为判断跌倒的辅助判据。实验表明,该应用能够为老年人的健康提供一种新的保障。 It acquired acceleration signal by tri-axial accelerometer and advanced the data processing was divided into parts that is pre-processing at client terminal and background processing. At the client terminal, it makes a pre-processing method that suspected data is acquired based on one-class SVM classification algorithm. At the background, it analyzed different action which expended different threshold ranges of energy to judgment, and then analyzed the special temporal speed, displacement and angle as an auxiliary criterion for judgment. The experiments show that the application can offer a new guarantee for the elderly health.
出处 《微型机与应用》 2011年第6期76-78,81,共4页 Microcomputer & Its Applications
关键词 跌倒检测 三轴加速度传感器 1-class SVM fall detection tri-axial accelerometer one-class SVM
  • 相关文献

参考文献7

  • 1杨冬叶,赵勇.我国空巢老年人的现状与对策[J].现代临床护理,2004,3(5):60-62. 被引量:58
  • 2HORNBROOK M C, STEVENS V J, WINGFIELD D J, et al.Preventing falls among community-dwelling older persons: Results from a randomized trial[J].The Gerontologist, 1994, 34(1) : 16-23.
  • 3LUO S,HU Q.A dynamic motion pattern analysis approach to fall deteetion[C].IEEE International Workshop on Biomedical Circuits & Systems, 2004 : p.S2.1_5-S2.1_8.
  • 4ROGELIO R, EDGARD P, ROGELIO G,et al. Michelle clifford human fall detection using 3-axis acceleromete [M]. 2005.
  • 5KANGAS M, KONTFILA A, WINBLAD I ,et al.Determina- tion of simple thresholds accelerometry-based parametersfor fall detection[C].Proceedings of the 29 Annual International Conference of the IEEE EMBS Cit6 lntemationale, Lyon, France August 23-26,2007:1367-1370.
  • 6BAJCSY R, CHEN J, KWONG K, et al.Fall detection using wireless sensor networks[C].Submitted to the 27th Annual International Conference of the EMBS, 2005: 759- 765.
  • 7BOUTEN C V C,KOEKKOEK K T M,VERDUIN M,et al.A riaxial accelerometer and portable data processing unit for the assessment of daily physical activity[J].IEEE Trans Biomed Eng, 1997(44) : 136- 147.

二级参考文献12

共引文献57

同被引文献36

  • 1施芹,裘安萍,苏岩,朱欣华.硅微陀螺仪的误差分析[J].传感技术学报,2006,19(05B):2182-2185. 被引量:13
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3QIAN Hui-min, MAO Yao-bin, XIANG Wen-be, et al. Recognition of human activities using SVM muhi-class classifier [ J ]. Pattern Recognition Letters,2010,31 (2) :100-111.
  • 4ZAFAR A K, WON S. Abnormal human activity recognition system based on R-transform and kernel discriminant technique for elderly home care[J]. Consumer Electronics,2011,58(4) :1843-1850.
  • 5ADITHYAN P, BHARGAVI R, VAIDEHI V. Abnormal human ac- tivity recognition using SVM based approach [ C ]//Proc of Interna- tional Conference on Recent Trends in Information Technology. 2012: 97-102.
  • 6HE Jin, LI Hua-ming, TAN Jin-dong. Real-time daily activity classi- fication with wireless sensor networks using hidden Markov model [ C ]//Proc of the 29th Annual International Conference of IEEE En- gineering in Medicine and Biology Society. Piscataway : IEEE Press, 2007:3192-3195.
  • 7WEI Hong-xing, HE Jin, TAN Jin-dong. Layered hidden Markov models for real-time daily activity monitoring using body sensor net- works [ J ]. Knowledge and Information Systems, 2011,29 ( 2 ) : 479-494.
  • 8DEREK H H, ZHANG Xian-xing, YIN Jie, et al. Abnormal activity recognition based on HDP-HMM models [ C ]//Proc of the 21 st Inter- national Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishing ,2009 : 1715-1720.
  • 9薛源.基于多传感器的老人跌倒检测系统的应用与研究[D].武汉:武汉理工大学,2011.
  • 10RABINER L R. A tutorial on hidden Markov models and selected ap- plications in speech recognition [ J ]. Proceedings of the IEEE, 1989,77 (2):257-286.

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部