期刊文献+

赤藓红荧光激发光谱突变的研究 被引量:2

Study on Saltation of Fluorescence Excitation Spectra of Erythrosine
下载PDF
导出
摘要 实验测量了10,20,30,40,50和60μg.mL-1六种浓度赤藓红溶液的荧光激发光谱和吸收光谱。发现在浓度为10和20μg.mL-1时,其荧光激发光谱在530 nm处会出现一个明显的激发峰,而当溶液浓度超过30μg.mL-1后,荧光激发光谱线型会发生突变,530 nm处成为谷值位置,并在530 nm两侧出现两个新的激发峰。对比各种浓度赤藓红溶液的吸收光谱,发现其与荧光激发光谱的变化并不一致,在530nm处均为吸收峰,无突变现象。通过数学计算及一系列对比实验的验证,确定是赤藓红的吸收特性以及光谱测量因素共同导致了其激发光谱的突变。研究结果可为进一步探讨赤藓红的理化特性提供指导,为研究物质荧光激发光谱的突变行为提供参考,并能够促进对荧光激发光谱的正确认识和光谱测量方式的改进。 The fluorescence excitation spectra and absorption spectra of six kinds of erythrosine solutions with concentrations of 10,20,30,40,50 and 60 μg·mL-1 were experimentally measured.It was found that the fluorescence excitation peaks are both located at 530 nm significantly when the concentrations of erythrosine solutions are 10 and 20 μg·mL-1.However,the linetype saltation of fluorescence excitation spectrum occurs as the concentration of erythrosine solution is above 30 μg·mL-1.The valley is located at 530 nm and two new peaks appear at both flanks of the valley.Compared with fluorescence excitation spectra,the absorption spectra of erythrosine solutions are without saltation and the peaks are all located at 530 nm.According to calculations and a series of contrast experiments,it was demonstrated that the absorption characteristic of erythrosine and the spectral measurement mode conspire to cause the saltation of fluorescence excitation spectra.The results can provide guidance for further research on physical and chemical properties of erythrosine,and offer help and reference for study on saltation behavior in fluorescence excitation spectra and improvement in spectral measuring mode.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第4期1065-1068,共4页 Spectroscopy and Spectral Analysis
基金 江苏省自然科学基金项目(BK2009066) 高等学校博士学科点专项科研基金项目(200802950005) 江苏省教育厅项目(JH08-18 CX08B-088Z)资助
关键词 赤藓红 荧光激发光谱 吸收光谱 突变 Erythrosine Fluorescence excitation spectra Absorption spectra Saltation
  • 相关文献

参考文献14

  • 1CHEN Guo-qing, WU Ya min, WEI Bai-lin, et al. Acta Physica Sinica, 2010, 59(7): 5100.
  • 2Wang X M, Wu H L, Nie J F, et al. Chinese Journal of Analytical Chemistry, 2009, 37(6): 811.
  • 3WEI Bai-lin, CHEN Guo-qing, WANG Jun, et ai. Journal of Optoelectronics ·Laser, 2009, 20(12): 1618.
  • 4Jana S, Jana T, Pavel M. Food Chemistry, 2009, 117(3): 491.
  • 5Rita Y, Rachad S, Bilal N, et al. Food Chemistry, 2009, 115(1): 304.
  • 6Marcelo F P, Maria S D N, Maria E C, et al. Talanta, 2006, 69(5): 1265.
  • 7Tohru S, Hiroto I, Masataka H. Talanta, 2009, 79(2): 177.
  • 8Rodriguez N, Ortiz M C, Sarabia I. A, et al. Analytica Chimica Acta, 2010, 657(2) : 136.
  • 9Sahar A, Boubellouta T, Lepetit J, et al. Meat Science, 2009, 83(4).- 672.
  • 10Natalia B, Roman U, Konstantin V, et al. Medical I.aser Application, 2009, 24(4): 247.

同被引文献34

  • 1杨建磊,朱拓,武浩.基于三维荧光光谱特性的白酒聚类分析研究[J].光电子.激光,2009,20(4):495-498. 被引量:21
  • 2张静,单保恩,刘刚叁,陈书红,赵学涛.香加皮乙酸乙酯提取物诱导人乳腺癌MCF-7细胞凋亡的研究[J].肿瘤,2006,26(5):418-421. 被引量:25
  • 3Soren Christian Schou. Influence of [ 2H]-labelled acetic acid as solvent in the synthesis of [2H]-Iabelled perhexiline[J].Journal of Labelled Compounds and Radiopharmaceuticals,2010,53(1):31-35.
  • 4Walt Partenheimer. The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures[J]. Advanced Synthesis & Catalysis, 2009,351 (3) : 456-466.
  • 5Bojan Kozlevear, Patrick Gamez, Rene de Gelder, et al. Counterion and solvent effects on the primary coordination sphere of copper(I]) bis (3.5-dimethylpyrazol-l-y]) acetic acid coordination compounds[J]. European Journal of Inorganic Chemistry,2011,24:3650-3655.
  • 6Simona Rapposelli, Federico Da Settimo, Maria Digiacomo, et al. Synthesis and biological evaluation of 2' -Qxo-2, 3-dihydro-3' H-spiro[chromene-4,5'-[1, 3]oxazolidin]-3' yl]acetic acid derivatives as aldose reductase inhibitors[J]. Archiv der Pharmazie, 2011,344(6) :372-385.
  • 7Pu L,Sun Y M,Zhang Z B. Hydrogen bonding in hydrates with one acetic acid molecule[J]. Phys. Chem. A. 2010, 114 (40): 10842-10849.
  • 8Bertin M, Romanzin C, Michaut X,et al. Adsorption of organic isomers on water lee surfaces .. a study of acetic acid and methyl formate[J]. J. Phys. Chem. C, 2011, 115(26) : 12920-12928.
  • 9XU Wen-hao,YANG Ji-chu. Computer simulations on aggregation of acetic acid in the gas Phase, liquid phase, and supercritical carbon dioxide[J].J. Phys. Chem. A, 2010,114( 16 ) : 5377- 5388.
  • 10Jorge Pedro Lo'pez-Alonso, Marta Bruix, Josep Font, et al. NMR spectroscopy reveals that RNase A is chiefly denatured in 40 % acetic acid:implications for oligomer formation by 3D domain swapping[J]. J. Am. Chem. Soc. ,2010,132(5) : 1621- 1630.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部