期刊文献+

质子型可逆固体氧化物电池的材料与反应机理 被引量:1

Reversible Solid Oxide Cell with Proton Conducting Electrolyte:Materials and Reaction Machanism
原文传递
导出
摘要 质子型可逆固体氧化物电池(reversible solid oxide cells based on proton conducting electrolyte,H-RSOC)是一类可用于实现可再生电能的储存、转换和再利用的高效能量转换装置。本文根据H-RSOC的运行特点,概括介绍了H-RSOC电极、电解质材料的选择要求及新型材料研究进展,并着重介绍了H-RSOC的空气极电化学反应机理,以进一步优化和发展适宜的空气极材料和微结构,促进H-RSOC的实际应用。 Reversible solid oxide cells based on proton conducting electrolytes (H-RSOC) are regarded as efficient energy conversion devices for practical application of renewable energy, such as solar energy and wind energy to smooth out their fluctuation and intermittence. In this paper, the requirements and development of electrode and electrolyte materials for H-RSOC are briefly reviewed, and especially, the reaction mechanisms of air electrode with respect to their demand on air electrode materials are summarized. Working in solid oxide fuel cells (SOFC) mode, the migration of protons to triple phase boundaries (TPBs) and the surface diffusion of oxygen ions to TPBs are supposed to be the rate limiting steps, which favors the composite consisting of oxygen ion-electron mixed conductors and proton conductors as air electrode. While in solid oxide electrolysis ceils (SOEC) mode, the transferring of protons decomposed from water to TPBs and the protons at TPBs transferring to the electrolyte are deemed as the rate limiting steps, and novel proton-electron mixed conductor might be the best choice of such air electrode. That' s because that the proton transfer in such proton-electron mixed conducting air electrode would be greatly improved for their high volume ratio ( - 60% ) and for their greatly enlarged electro active sites, which expands from traditional TPBs in composite electrodes to the interface of gas phase/mixed conducting air electrode.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2011年第2期477-486,共10页 Progress in Chemistry
关键词 氢能 可逆固体氧化物电池 质子导体 电极材料 电极反应模型 hydrogen energy reversible solid oxide ceil proton conductor electrode materials electrode reaction model
  • 相关文献

参考文献63

  • 1Elangovan S, Hartvigsen J J. International Journal of Applied Ceramic Technology, 2007, 4 : 109-119.
  • 2Stambouli A B, Traversa E. Renewable & Sustainable Energy Reviews, 2002, 6:433-455.
  • 3Liang M D, Yu B, Wen M F, Chen J, Xu J M, Zhai Y C. J. Power Sources, 2009, 190:341-345.
  • 4Laguna-Bercero M A, Skinner S J, Kilner J A. J. Power Sources, 2009, 192:126-131.
  • 5Kharton V V, Marques F M B, Atkinson A. Solid State Ionics, 2004, 174:135-149.
  • 6Kreuer K D. Annual Review of Materials Research, 2003, 33 : 333-359.
  • 7Jensen S H, Mogensen M. 19th World Energy Congress, 2004.
  • 8Hashimoto S, Liu Y, Mori M, Funahashi Y, Fujishiro Y. Int, J. Hydrogen Energy, 2009, 34:1159-1165.
  • 9Jensen S H, Larsen P H, Mogensen M, Int. J. Hydrogen Energy, 2007, 32:3253-3257.
  • 10Ni M, Leung M K H, Leung D Y C. Int. J. Hydrogen Energy, 2008, 33:2337-2354.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部