期刊文献+

基于扩展模糊概念网的信息检索结果个性化的研究 被引量:2

Study on Personalizing Results of Information Retrieval Based on Extended Fuzzy Concept Networks
下载PDF
导出
摘要 电子文档和用户的增长导致了信息检索结果个性化模式的创新,从而更好地为用户偏好服务。个性化的内容检索旨在改善检索过程中考虑个别用户的特殊兴趣。本文提出了一种基于扩展模糊概念网的信息检索结果的个性化的新方法。在这种方法中,网页和用户偏好都将以扩展模糊概念网形式表示。扩展模糊概念网可看作是关系矩阵和关联矩阵模型,关系矩阵中的元素代表模糊概念间的关系,关联矩阵中的元素表明概念间的关联度。这种方法的好处是能找到用户查询的绝大多数文档并且更灵活、更好地显示给用户。 The increase of electronic documents and their users has led to the creation of new patterns for personalizing results of information retrieval and, which provides better service to users based on their preferences. Personalized content retrieval aims at improving the retrieval process by taking into account the particular interests of individual users. In this paper,we proposes a new method for personalizing results of information retrieval based on extended fuzzy concept networks. In this method, both pages and user profiles will be showed as extended fuzzy concept networks. An extended fuzzy concept network can be modeled by a relation matrix and a relevance matrix, where the elements in a relation matrix represent the fuzzy relationships between concepts, and the elements in a relevance matrix indicate the degrees of relevance between concepts. Advantage of this method is to find the most documents with respect to the user's query and more flexible and better showing user.
作者 俞扬信
出处 《情报学报》 CSSCI 北大核心 2011年第3期261-267,共7页 Journal of the China Society for Scientific and Technical Information
基金 淮阴工学院自然科学基金项目“基于语义的三维模型检索技术研究”(编号:HGB0907).
关键词 信息检索 用户偏好 个性化 模糊概念网 矩阵 information retreival, user profiles,personalization, fuzzy concept networks, matrix.
  • 相关文献

参考文献8

  • 1Kim K J,Cho S B. Personalized Mining of Web Documents Using Link Structure and Fuzzy Concept Networks [ C ]. Applied Soft Computing Trans. 7. Amsterdam: Elsevier, 2007:398-410.
  • 2Chen S M,Hoang Y J, Lee C H. Fuzzy Information Retrieval Based on Multi- relationship Fuzzy Concept Networks [ C ]. Fuzzy Set and Systems Trans. 140. Amsterdam : Elsevier, 2003 : 183 -205.
  • 3Lucarella D, Morara R. FIRST: fuzzy information retrieval system[ J]. Acm Transactions on Modeling and Computer Simulation,1991, 17(2) :81-91.
  • 4俞扬信.基于知识推理的语义信息检索研究[J].情报杂志,2008,27(11):78-80. 被引量:10
  • 5Jmartin Bautista M. Mining Web Documents of Find Additional Query Terms Using Fuzzy Association Rules [C]. Fuzzy Set and Systems Trans. 148. Amsterdam: Elsevier, 2004 : 85 - 104.
  • 6Mandala R,Tokunaga T. Query expansion using heterogeneous thesauri [ J ]. Information Processing & Management, 2000,36(36) :361-378.
  • 7Arotaritei D, Mitra S. A survey in the fuzzy framework [ J ]. European Journal of Operational Research, 2006, 174(3) :1353-1367.
  • 8俞扬信,严云洋.一种基于网页分割的Web信息检索方法[J].图书情报工作,2009,53(3):108-110. 被引量:3

二级参考文献12

  • 1刘亚军,徐易.一种基于加权语义相似度模型的自动问答系统[J].东南大学学报(自然科学版),2004,34(5):609-612. 被引量:35
  • 2林培光,刘弘,樊孝忠,王涛.New method for query answering in semantic web[J].Journal of Southeast University(English Edition),2006,22(3):319-323. 被引量:1
  • 3宋玲玲,李村合.基于链接结构分析的Web信息检索方法研究[J].现代情报,2007,27(2):133-135. 被引量:7
  • 4Franz Baader, Diego Calvanese, Deborah McGuinness, et al. The Description Logic Handbook [ M ]. Cambridge University Press, 2003 : 189 - 212
  • 5U Straecia. Reasoning Within Fuzzy Description Logics[J ]. Journal of Artificial Intelligence Research, 2001,14 : 323 - 328
  • 6Brian McBride. Jena. A Semantic Web Toolkit [J ]. IEEE Internet Computing, 2002,6 (6) : 55 - 59
  • 7Aleman - Meza B. SWETO. Large - scale Semantic Web Test bed [A]. Proceedings of the16th International Conference on Software Eng &Knowledge Eng (SEKE2004) :Workshop on Ontology in Action. Banff, Canada. Knowledge Systems Inst, 2004 : 490 - 493
  • 8Kerschberg Larry, Kim Wooju, Scime Anthony. A Personalizable Agent for Semantic Taxonomy - Based Web Search [M]. Springer Berlin:Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)[ J ]. Innovative Concepts for Agent-Based Systems, 2003 : 3 - 31
  • 9Park J S, Chen M S, Yu P S. An effective hashbased algorithm for mining association rules. Proceedings of the ACM SIGMOD International Conference on Management of Data, San Jose: CA, 1995 : 175 - 186.
  • 10俞扬信.基于OWL-S服务匹配的信息查询模型[J].计算机与应用化学,2007,24(9):1277-1280. 被引量:5

共引文献10

同被引文献20

  • 1尚景盛,胡立胜,牛欣,司银楚.半夏泻心汤配伍应用的数据挖掘试验[J].中日友好医院学报,2005,19(4):227-229. 被引量:10
  • 2孙吉红,刘伟成.基于语义网的信息过滤模型与算法[J].情报杂志,2007,26(1):2-4. 被引量:4
  • 3史慧敏,陈哲强,王文杰,李秀彬.多Agent通信与合作机制研究[J].微电子学与计算机,2007,24(5):30-32. 被引量:9
  • 4吴兰成.中国中医药主题词表[M].北京:中医古籍出版社,1996.
  • 5A MicariUi, F Gaspaetti, F Sciarrone, et al. Personalized Search on the World Wide Web [ C ]. Lecture Notes in Computer Sci- ence, 2007:225-230.
  • 6F Paul M Speretta,S Gauch. Personalized Search Based on user Search Histories[ C]. Proceedings of the IEEE/WIC/ACM In- ternational Conference on Web Intelligence, 2005 : 622 - 628.
  • 7P-A Chirita, W Nejdl, R Paiu, et al. Using ODP Metadata to Personalize Search[ C]. Proceedings of the 28th Annual Interna- tional ACM SIGIR Conference on Research and Development in Information Retrieval, 2005 : 178-185.
  • 8ODP [ EB/OL]. [ 2011-06 -08 ]. http ://baike. baidu, corn/view/5069, htm.
  • 9国家中医药管理局《中华本草》编委会.中华本草[M].上海:上海科学技术出版社,2006.
  • 10甘健侯,姜跃,夏幼明.本体方法及其应用[M].北京:科学出版社,2011:188-189.

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部