期刊文献+

介孔硅酸锰镁可充镁电池正极材料的制备及其电化学性能研究 被引量:11

Mesoporous Magnesium Manganese Silicate as a Cathode Material for Rechargeable Magnesium Batteries
下载PDF
导出
摘要 采用介孔二氧化硅MCM-41作模板和硅源,合成了具有介孔结构的可充镁电池正极材料硅酸锰镁.分别用XRD、SEM、TEM和氮气吸脱附测试研究了合成材料的介孔结构,并通过循环伏安、恒电流充放电测试比较了介孔与无孔硅酸锰镁材料的电化学性能.由于介孔材料活性表面较大,可增加电解液与活性材料的接触,使材料具有较多的电化学反应位.因而,与相应的无孔材料相比,具有介孔结构的硅酸锰镁材料呈现出较低的充放电极化、较大的放电容量和较高的放电电压平台.在0.25 mol/L Mg(AlCl2EtBu)2/THF电解液中,0.2 C(约62.8 mA/g)充放电速率下,介孔硅酸锰镁材料首次放电容量可达到241.8 mAh/g,放电平台为1.65 V(vs Mg/Mg2+).设计具有介孔结构的材料为提高可充镁电池正极的电化学性能提供了一条有效的途径. Mesoporous magnesium manganese silicate as a cathode material for rechargeable magnesium batteries was prepared using mesoporous silica MCM-41 as both template and silicon source.X-ray diffraction(XRD),scan-ning electron microscope(SEM),transmission electron microscope(TEM) and N2 adsorption-desorption measure-ments were performed to characterize the mesoporous structure of the as-prepared material.Furthermore,the electro-chemical performance of mesoporous and bulk materials were compared by cyclic voltammetry and direct current charge-discharge measurements.The larger surface area of the mesoporous material favors the efficient contact be-tween active material and electrolyte,providing more active sites for the electrochemical reaction.As a result,the mesoporous material exhibits better electrochemical performance with lower polarization for magnesium de-intercalation and intercalation,larger discharge capacity and higher discharge flat plateau compared with corre-sponding bulk material.In 0.25 mol/L Mg(AlCl2EtBu)2/THF electrolyte,the initial discharge capacity and discharge voltage plateau of the mesoporous material can reach 241.8 mAh/g and 1.65V,respectively.The mesoporous struc-ture may provide a new approach to improve the reaction activity of the cathode materials for rechargeable magne-sium batteries.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2011年第2期129-133,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(20603022 20973112) 国家973计划(2007CB209700)~~
关键词 可充镁电池 正极材料 介孔结构 电化学性能 硅酸锰镁 rechargeable magnesium batteries cathode materials mesoporous structure electrochemical performance magnesium manganese silicate
  • 相关文献

参考文献18

  • 1袁华堂,吴锋,武绪丽,李强.可充镁电池的研究和发展趋势[J].电池,2002,32(z1):14-17. 被引量:25
  • 2冯真真,努丽燕娜,王久林,等.镁二次电池研究进展[J].化学与物理电源系统,2007,.
  • 3Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries. Nature, 2000, 407(12): 724-727.
  • 4Aurbach D, Moshkovich M, Schechter A, et al. Magnesium deposition and dissolution processes in ethereal Grignard salt solutions using simultaneous EQCM-EIS and in situ FTIR spectroscopy. Electrochem. Solid-State Lett., 2000, 3(1): 31-34.
  • 5Novak P, Imhof R, Haas O. Magnesium insertion electrodes for rechargeable nonaqueous batteries-a competitive alternative to lithium. Electrochim. Acta, 1999, 45(1/2): 351-367.
  • 6Levi M D, Lancry E, Gizbar H, et al. Kinetic and thermodynamic studies of Mg^2+ and Li^+ ion insertion into the Mo658 chevrel phase. J. Electrochem. Soc., 2004, 151(7): A1044-A1051.
  • 7Feng Z Z, Yang J, NuLi Y N, et al. Sol-Gel synthesis of Mg1.03Mn0.978iO4 and its electrochemical intercalation behavior. J. Power Sources, 2008, 184(2): 604-609.
  • 8Feng Z Z, Yang J, NuLi Y N, et al. Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO4. Electrochem. Commun., 2008, 10(9): 1291-1294.
  • 9NuLi Y N, Yang J, Wang J L, et al: Electrochemical intercalation of Mg^2+ in magnesium manganese silicate and its application as high-energy rechargeable magnesium battery cathode. J. Phys. Chem. C, 2009, 113(28): 12594-12597.
  • 10Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed., 2008, 47(16): 2930-2946.

二级参考文献37

  • 1[17]Winter M, Besenhard J O, Spahr M E, et al. Adv Mater, 1998, 10: 725.
  • 2[18]Dickens P G, Pye M F. in: Whittingham M S, Jacobson A. J. (Eds.). Intercalation Chemistry [ M ]. NY, USA: Academic Press Inc 1982:547.
  • 3[19]Murphy D W, Christian P A, Di Salvo F J, et al. Inorg Chem, 1979, 18:2 800.
  • 4[20]Le D B, Passerini S, Coustier F, et al. Chem Mater, 1998, 10:682.
  • 5[21]Pereira-Ramos J P, Messina R, Perichon J. J Electroanal Chem, 1987. 218:241.
  • 6[22]Joho F B, PhK thesis No. 11754, ETH Zurich, Swithzerland, (1996).
  • 7[23]Fjoho, P. Novak, O. Haas, Rnesper, Chimia, 1993, 288: 47.
  • 8[24]Novak P, Scheifele W, Haas O. Molten Salt Forum 1-2 (1993/94) 389.
  • 9[25]Novak P, Scheifele W, Joho F, et al. J Electrochem Soc, 1995, 142: 2544.
  • 10[26]Novak P, Scheifele W, Ohaas. J Power Sources 1995, 54: 479.

共引文献24

同被引文献194

引证文献11

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部