期刊文献+

短时间直接力刺激对后肢去负荷大鼠骨丢失的防护作用 被引量:2

Preventing Effect of Short-time Direct Mechanical Loading Stimulation Against Bone Loss of Hind-Limb Unloaded Rats
下载PDF
导出
摘要 目的研究短时力负荷刺激对模拟失重大鼠骨丢失的防护作用。方法采用后肢去负荷大鼠模拟失重,每天给大鼠胫骨施加5 N/10 Hz的横向及纵向力刺激1 min,通过大鼠矿盐含量、生物力学特性及生化指标变化等综合评价力负荷的防护效果。结果短时间直接力刺激可改善机体钙磷平衡,降低股骨干NO含量,增加矿盐含量,改善松质骨的显微结构,增强骨生物力学强度(P<0.05),且胫骨中部横向力刺激效果比径向刺激效果好。结论短时间直接力刺激可有效改善后肢去负荷引起的骨丢失。 Objective To study the effectiveness of mechanical loading stimulation on preventing the bone loss of hind limb unloaded rats.Methods Microgravity was simulated with suspending tail of rat.One minute's mechanical loading at 5N/10Hz was performed on the tibia of rat everyday.The bone mineral content,properties of vitodynamics and biochemical markers of bone were tested to evaluate the effectiveness of this countermeasure.Results Short time direct mechanical loading could keep the balance of calcium and phosphate metabolism,decrease the content of nitrogen monoxidum in femur,improve the microstructure of cancellous bone and increase bone mineral content and its intensity.The horizontal mechanical loading of the tibia had the better effect than that of the vertical.Conclusion Short time direct mechanical loading could effectively prevent the bone loss caused by hind limb unloading.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2011年第1期9-12,共4页 Space Medicine & Medical Engineering
基金 国家863项目(2008AA12A220) 国家自然科学基金项目(30970778)
关键词 失重模拟 后肢去负荷 骨丢失 直接力负荷 对抗措施 weightlessness simulation hind-limb unloading bone loss direct mechanical loading counter measures
  • 相关文献

参考文献11

  • 1Sibonga JD, Evanset H J, Sung HG, et al. Recovery of spaceflight-induced bone loss: Bone mineral density after long-duration missions as fitted with an exponential function [ J ]. Bone, 2007, 41:973-978.
  • 2Stewart LH, Trunkey D, Rebagliati GS. Emergency medicine in space[ J]. J Emergency Medicine,2007,32( 1 ) : 45-54.
  • 3Plotkin LI, Mathov I, Aguirre J, et al. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs [ J ] . Am J Physiol Cell Physiol, 2005, 289 (3) :633-643.
  • 4Inman CL,Warren GL,Hogan HA. Mechanical loading attenuates bone loss due to immobilization and calcium deficiency [J]. J App Physiol, 1999,87( 1 ) :189-195.
  • 5Rubin C, Turner S, Bain S, et al. Extremely low level mechanical signals are anabolic to trabecular bone [ J ]. Nature, 2001, 412(9) : 603-604.
  • 6谈诚,马超,李志利,柯征,宫赫,张明,陈善广.45Hz全身振动预防尾吊模型大鼠骨质丢失的研究[J].中国康复医学杂志,2009,24(3):200-203. 被引量:4
  • 7黄大威,万玉民,谢力勤,马永洁,梁文彬,史之祯.维生素K对尾悬吊大鼠骨代谢的影响[J].航天医学与医学工程,2001,14(5):346-349. 被引量:7
  • 8Ravi K. Ponnappan,Hassan Serhan, Brett Zarda BS, et. al. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation [ J ]. The Spine Journal, 2009, 9(3 ) :263-267.
  • 9Teixeira CC,Aqoston H,Beier F. Nitric oxide, C-type natriuretic peptide and cGMP as regulators of endochondral ossification [ J ]. Developmental Biology, 2008, 319 (2) : 171-178.
  • 10M. Caminitia, G. Pagano Marianob. Correlation analysis of bone turnover markers : ALP, CTX, osteocalcin and osteoporosis in 34 women with systemic sclerosis [ J ]. Bone, 2009, 44 (S2) : S377-S378.

二级参考文献23

  • 1谈诚 ,张春林 .雄激素在失重骨丢失中的作用[J].航天医学与医学工程,2004,17(4):309-312. 被引量:5
  • 2陈杰,马进,丁兆平,张立藩.一种模拟长期失重影响的大鼠尾部悬吊模型[J].空间科学学报,1993,13(2):159-162. 被引量:256
  • 3崔伟,史之祯.失重环境下骨钙素与骨代谢的关系[J].生理科学进展,1993,24(3):281-283. 被引量:1
  • 4谢力勤.阿伦膦酸钠、氟化物、二十八烷醇对悬吊大鼠骨质及离体成骨细胞增殖分化的影响[M].北京:航天医学工程研究所,1999..
  • 5Russell TT. Physiology of a Microgravity Environment: Invited Review: What do we know about the effects of spaceflight on bone[J]. J Appl Physiol, 2000, 89(2): 840-847.
  • 6Vico L, Lafage MH, AlexandreC. Effects of gravitational changes on the bone system in vitro and in vivo [J]. Bone, 1998, 5(S):95-100.
  • 7Peter RC, Angelo A, Andrea JR. Exercise and pharmacological countermeasure for bone loss during long-duration space flight [J]. Gravitational and Space Biology, 2005, 18(2): 39-58.
  • 8Rubin C, Turner, S,Bain S, et al. Anabolism: Low level mechanical signals are anabolic to trabecular bone [J]. Nature, 2001, 412: 603-604.
  • 9Mester J, Kleinoder H, Yue Z. Vibration training: benefits and risks [J]. Journal of Biomechanies, 2006, 39: 1056-1065.
  • 10Jordan J. Good vibrations and strong bones [J]. Am J Fhysiol Regul Integr Comp Physiol, 2005, 288: 555-556.

共引文献9

同被引文献120

  • 1王晓楠,孙联文,樊瑜波.微重力对骨组织细胞功能的影响[J].中华航空航天医学杂志,2012,23(2):151-156. 被引量:4
  • 2喻鑫罡,张先龙,曾炳芳.低频可控性微动影响长骨骨折愈合的实验研究[J].中华创伤骨科杂志,2005,7(8):744-748. 被引量:24
  • 3Miller PD, Jamal SA, Evenepoel P, Eastell R, Boonen S. Renal safety in patients treated with bisphosphonates for osteoporosis: A review. J Bone Miner Res 2013; 28(10): 2049-59.
  • 4McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, et al. Bisphosphonate therapy for osteoporosis: Benefits, risks, and drug holiday. Am J Med 2013; 126(1): 13-20.
  • 5Crabtree GR, Olson EN. NFAT signaling: Choreographing the social lives of ceils. Cell 2002; 109 Suppl: $67-79.
  • 6Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc 1 (NFAT2) integrate RANKL signaling in terminal differentiation ofosteoclasts. Dev Cell 2002; 3(6): 889-901.
  • 7Takayanagi H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immu- no12007; 7(4): 292-304.
  • 8Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med 2005; 11(8): 880-5.
  • 9Mellis DJ, Itzstein C, Helfrich MH, Crockett JC. The skeleton: A multi-functional complex organ: the role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol 2011, 211 (2): 131-43.
  • 10del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone 2008; 42( 1): 19-29.

引证文献2

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部