期刊文献+

饱水白云岩临界点、骨架和流体弹性参数的数值计算 被引量:3

Bidirectional Linear Regression Method for Calculating Critical Point,Framework and Pore Fluid Parameters of Water-saturated Dolomite
下载PDF
导出
摘要 基于临界孔隙度模型,提出了用岩石的整体弹性信息反演求取临界点、流体和骨架等局部弹性参数的数值计算方法和双向线性回归计算公式;结合饱水白云岩的样品测试数据,以孔隙度为自变量和因变量,对密度和密度与纵、横波速度平方的乘积分别进行了数值计算。以测试样品的整体信息求得其临界点、流体和骨架弹性参数值,并与实测数据做了相关性分析,其相关系数高达90%,充分表明数值计算公式的正确性和实现方法的有效性。岩石骨架、流体弹性参数的数值反演计算在油气勘探领域中具有巨大潜力,运用测井曲线和地震数据,可以反演求出岩石孔隙中流体弹性参数(密度、速度),对直接指示油层、气层起到重要作用。 The critical porosity and relative elastic parameters of the porous media are usually studied by methods of experimental measurements and data analysis,however it is difficult and complicated to calculate elastic parameters by these methods.So in this paper,a numerical calculation approach and some equations of bidirectional linear regression are provided for calculating these elastic parameters.The derived bidirectional linear equations in this paper show that ρ,ρV2S sand ρV2P are functions of ,at the same time  is a function of ρ,ρV2S and ρV2P.Based on these equations,in accordance with density,compressional and shear velocities of entirety,twelve partial elastic parameters of framework,pore fluid and critical point can be obtained.Correlation coefficients of simulated data and measured data are over 90%,which proves the feasibility of the equations and the availability of this method.In the field of oil and gas exploration,the method can be directly used to calculate elastic parameters of pore fluid,and plays a crucial role in predicating oil and gas reservoirs.
出处 《现代地质》 CAS CSCD 北大核心 2011年第1期129-136,共8页 Geoscience
基金 国家自然科学基金项目(40874052)
关键词 临界点 孔隙流体 骨架 弹性参数 数值计算方法 critical point pore fluid framework elastic parameter numerical calculation
  • 相关文献

参考文献12

  • 1Biot M A.Theory of elasticity and consolidation for a porous anisotropic solid[J].Applied Physics,1955,26:182-185.
  • 2Blot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid:I.low-frequency range and Ⅱ.Higher-frequency range[J].Acoustical Society of America,1956,28:168-191.
  • 3Biot M A.Mechanics of deformation acoustic propagation in porous media[J].Applied Physics,1962,33:1482-1498.
  • 4Biot M A.Generalized theory of acoustic propagation in porous dissipative media[J].Acoustical Society of America,1962,34:1254-1264.
  • 5Mavko G,Mukerji T,Dvorkin J.The rock physics handbook[M].New York:Cambridge University Press,1998:221-224.
  • 6Mavko G,Mukerji T,Dvorkin J.The rock physics handbook[M].2nd Edition.New York:Cambridge University Press,2009:446-448.
  • 7Yin H,Nur A,Mavko G.Critical porosity-A physical boundary in poroelasticity[J].Rock Mechanics and Mining Sciences &Geomechanics,1993,30:805-808.
  • 8Nur A,Mavko G,Dvorkin J,and Galmudi D.Critical porosity:A key to relating physical properties to porosity in rocks[J].The Leading Edge,1998,17:357-362.
  • 9Chen Q,Nur A.Critical concentration models for porous materials[M] //Yavuz Corapcioglu M.Advances in Porous Media.New York:Elsevier,1994:169-308.
  • 10Niu B H,Sun C Y,Yan G Y,et al.Linear numerical calculation method for obtaining critical point,pore fluid,and framework parameters of gas-bearing media[J].Applied Geophysics,2009,6:319-326.

二级参考文献6

  • 1布尔贝 库索 甄斯纳 许云译.孔隙介质声学[M].北京:石油工业出版社,1994.88页.
  • 2Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid,part Ⅰ:low frequency range[J].Journal of the Acoustical Society of America,1956,28(2):168-178.
  • 3Mavko G,Mukerji T,Dvorkin J.The Rock Physics Handbook[M].London:Cambridge University Press,1998:162-166.
  • 4Domenico S N.Elastic properties of unconsolidated porous sand reservoirs[J].Geophysics,1977,42(7):1339-1368.
  • 5White J E.Underground Sound:Application of Seismic waves[M].Amsterdam:Elsevier,1983:57-62.
  • 6Dunn K J.Rock Physics.2005.

共引文献4

同被引文献55

引证文献3

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部