期刊文献+

改进BP神经网络模型及其稳定性分析 被引量:67

Improved BP neural network model and its stability analysis
下载PDF
导出
摘要 针对传统BP算法抗干扰能力差、学习速率慢且易陷入局部极小点等缺点,提出一种基于变更传递函数倾斜度和动态调节不同学习速率的BP改进算法,并在此基础上采用Lyapunov稳定性原理分析改进算法的收敛性。该算法综合考虑网络训练方式和学习率的不足,设计新的复合误差函数,同时采用一种分层动态调整不同学习率的新方法,并采用批量样本进行训练,以加快传统BP算法的收敛速度和避免陷入局部极小值点。在此基础上,将该算法应用于带钢表面缺陷图像检测中,并比较改进算法与传统算法在缺陷检测中的性能参数。研究结果表明:该改进算法能够提高缺陷识别率,检测速度快,更能满足钢板表面质量检测的实时性要求,是一种行之有效的方法。 As for shortcomings of classical BP algorithm such as bad anti-jamming ability, low learning rate and easy plunging into local minimum, a new kind of improved BP algorithm was proposed with varying slope of activation function and dynamically adjusting different learning rates. Moreover, the convergence of this improved algorithm was analyzed based on the principle of Lyapunov stability. Considering the deficiency of network training and insufficient learning rate, a new composite error function was invented. A new method of dynamic adjustment of different learning rate was adopted to accelerate the convergence of classical BP algorithm, and to avoid plunging into the local minimum point. The proposed algorithm was applied to the inspection of the surface defective image of steel strips and compared with traditional algorithm with defect detection performance parameters. The results show that the improved BP algorithm has many merits such as high inspection speed, high discrimination and real-time capacity which can satisfy the demand of defect detection on steel plate surface, so it is an effective method.
作者 张国翊 胡铮
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第1期115-124,共10页 Journal of Central South University:Science and Technology
基金 国家科技重大专项(2009ZX03004-001)
关键词 BP神经网络 缺陷检测 复合误差函数 LYAPUNOV稳定性 BP neural network defect detection composite error function Lyapunov stability
  • 相关文献

参考文献12

  • 1张海东,赖康生,代东明,赵向阳.钢板无损检测中基于模糊神经网络的参数识别[J].计算机测量与控制,2003,11(1):14-16. 被引量:6
  • 2王越,曹长修.BP网络局部极小产生的原因分析及避免方法[J].计算机工程,2002,28(6):35-36. 被引量:21
  • 3陈斌,万江文,吴银锋,秦楠.神经网络和证据理论融合的管道泄漏诊断方法[J].北京邮电大学学报,2009,32(1):5-9. 被引量:20
  • 4周辉仁,郑丕谔,牛犇,宗蕴.基于递阶遗传算法和BP网络的模式分类方法[J].系统仿真学报,2009,21(8):2243-2247. 被引量:9
  • 5Kamarthi S V,Pittner S.Accelerating neural network training using weight extrapolations[J].Neural Networks,1999,12(9):1285-1299.
  • 6Martin E Moiler S.A scaled conjugate gradient algorithm for fast supervised learning[J].Neural Networks,1993,6(3):525-533.
  • 7Yu C C,Lin B D.A backpropagation algorithm with adaptive learning rate and momentum coefficient[C]//Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN'02).Honolulu,2002:1218-1223.
  • 8WANG Wei,YU Bo.Text categorization based on combination of modified back propagation neural network and latent semantic analysis[J].Neural Computing and Applications,2009,18(8):875-881.
  • 9WU Wei,SHAO Hong-mei,QU Di.Strong convergence for gradient methods for BP networks training[C]//ZHAO Ming-sheng,SHI Zhong-zhi.Proceedings of 2005 International Conference on Neural Networks and Brains.Beijing:IEEE Press,2005:332-334.
  • 10MAN Zhi-hong,WU Hong-ren,LIU S,et al.A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks[J].IEEE Trans on Neural Networks,2006,17(6):1580-1591.

二级参考文献47

共引文献62

同被引文献687

引证文献67

二级引证文献412

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部