期刊文献+

基于二阶统计量的分布式信源二维波达方向估计

Two-dimensional direction of arrival estimation for distributed source based on second-order statistics
下载PDF
导出
摘要 对于由本地散射导致的分布式信源二维波达方向估计,根据空间角度信号密度的共轭对称特性,首先将相干分布式信源方向向量化简为传统点信源方向向量与实向量的Schur-Hadamard积,进而提出了一种基于Schur-Hadamard积的相干分布式信源二维波达方向估计算法。该算法通过构造基于Schur-Hadamard积的二阶统计量,可直接给出仰角和方位角的估计值。与传统谱峰搜索类算法和经典子空间类算法相比,无须谱峰搜索和任何特征值或奇异值分解,有效地降低了计算量;所利用的二阶统计量对噪声不敏感,具有较好的信噪比性能。仿真实验表明,该算法具有较好的参数估计精度,可有效解决复杂通信环境下相干分布式信源的二维波达方向估计问题。 For estimating the two-dimensional direction of arrival(DOA) of local scattering distributed source,according to the symmetry assumption of spatial angular signal intensity,the steering vector is deduced to be a Schur-Hadamard product comprising the steering vector of the point source and a real vector for coherently distributed source.And then second-order statistics based on Schur-Hadamard product is proposed for estimating elevation and azimuth angles.An advantage of this method over the classical algorithms is that it does not apply any peak-finding searching and eigenvalue decomposition or singular value decomposition,which significantly reduces the computational complexity.The proposed algorithm is not sensitive to white noise,so it can improve signal to noise ratio performance.Simulations clearly demonstrate that the algorithm enjoys improved precision and is more suitable for complicated environment.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第3期486-489,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60874108 60904035) 辽宁省自然科学基金(20102064) 中央高校基本科研业务费(N090323003)资助课题
关键词 阵列信号处理 相干分布式信源 二阶统计量 仰角 方位角 array signal processing coherently distributed source second-order statistics elevation angle azimuth angle
  • 相关文献

参考文献11

  • 1Zoubir A, Wang Y. Robust generalized Capon algorithm for estimating the angular parameters of multiple incoherently distributed sources[J]. IET Signal Processing, 2008,2(2) : 168 - 168.
  • 2Hassanien A, Shahbazpanahi S, Gershman A B. A generalized Capon estimator for localization of multiple spread sources[J]. IEEE Trans. on Signal Processing ,2004,52(1) :280 - 283.
  • 3Christou C T, Jacyna G M. Simulation of the beam response of distributed signals[J]. IEEE Trans. on Signal Processing, 2005,53(8) :3023 - 3031.
  • 4Guo X S, Wan Q, Wu B, et al. Parameters localization of coherently distributed sources based on sparse signal representation[J]. IEE Radar, Sonar& Navigation,2007,1(4):261-265.
  • 5Shahbazpanahi S, Valaee S. A new approach to spatial power spectral density estimation for multiple incoherently distributed sources[C]// Proc. of International Conference on Acoustics, Speech and Signal Processing, 2007 : 1133 - 1136.
  • 6Lee J, Joung J, Kin, J D. A method for the direction-of-arrival estimation of incoherently distributed sources[J]. IEEE Trans. on Vehicular Technology ,2008,57(5) :2885 - 2893.
  • 7Souden M, Affes S, Benesty J. A two stage approach to estimate the angles of arrival and the angular spreads of locally scat- ters sourees[J]. IEEE Trans. on Signal Processing, 2008,56 (5) :1968 - 1983.
  • 8Zoubir A, Wang Y, Charge P. Efficient subspaee-based estimator for localization of multiple incoherently distributed source[J]. IEEE Trans. on Signal Processing ,2008,56(2) : 532 - 542.
  • 9Wan Q, Peng Y N. sional parameters u model[J].IEE Proc (6):313 -317. Low-complexity estimator for four-dimen nder a reparameterised distributed source c. of Radar Sonar Navigation, 2001,148.
  • 10I.ee J, Song L, Kwon H, et al. Low-complexity estimation of 2D DOA for coherently distributed sources[J]. Signal Processing,2003,83:1789 - 1802.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部