期刊文献+

具有受限转移率的跳变系统L_2-L_∞模糊控制 被引量:1

L_2-L_∞ fuzzy control of jump systems with bounded transition probabilities
下载PDF
导出
摘要 讨论了一类含不确定转移率的非线性Markov跳变系统的L2-L∞模糊控制问题。系统模态间转移概率所包含的不确定性是未知且有界的。通过Takagi-Sugeno模型模糊建模,获取了整个闭环模糊动态方程。基于L2-L∞模糊控制理论,提出了使得系统随机稳定且满足一定输入输出L2-L∞特性的模态依赖的模糊控制器存在条件。利用构造的Lyapunov-Krasovskii函数,结合线性矩阵不等式技术,给出了鲁棒L2-L∞模糊控制器的设计方法,并将其设计转化为一个优化问题。仿真示例说明了设计方法的有效性。 The L2-L∞ fuzzy control problem of a class of nonlinear Markov jump systems(MJSs) with uncertain transition jump rates is studied.The uncertain transition jump rates are assumed unknown but bounded.By means of Takagi-Sugeno fuzzy models,the overall closed-loop fuzzy dynamic equalities are constructed through selected membership functions.Based on the L2-L∞ fuzzy control theory,the sufficient condition for the existence of mode-dependent fuzzy controller is given so that the fuzzy MJSs are stochastically stable for all admissible uncertainties and satisfy the given L2-L∞ control index.By using the constructed Lyapunov-Krasovskii function and applying linear matrix inequality techniques,the design scheme of the robust L2-L∞ fuzzy controller is derived and described as an optimization one.Simulation results demonstrate the validity of the proposed approach.
作者 何舒平 刘飞
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第3期594-599,637,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(60974001 60904045) 江苏省"六大人才高峰"项目 江苏省普通高校研究生科研创新计划资助课题
关键词 MARKOV跳变系统 TAKAGI-SUGENO模型 不确定转移率 L2-L∞模糊控制器 线性矩阵不等式 Markov jump system Takagi-Sugeno model uncertain transitions jump rate L2-L∞ fuzzy controller linear matrix inequality
  • 相关文献

参考文献23

  • 1Krasovskii N M, Lidskii E A. Analytical design of controllers in systems with random attributes[J]. Automation and Remote Control, 1961,22(1,2,3) :1021 - 1025,1141 - 114.6,1289- 1294.
  • 2Feng X, Loparo K A, Ji Y. Stochastic stability properties of jump linear systems[J]. IEEE Trans. on Automatic Control, 1992,37(1) :38 - 53.
  • 3Mao X. Stability of stochastic differential equations with Mark ovian switching[J]. Stochastic Processes and Their Applications,1999,79(2) :45 - 67.
  • 4De Farias D P, Geromel J C, Do Val J, et al. Output feedback control of Markov jump linear systems in continuous time[J]. IEEE Trans. on Automatic Control ,2000,45(5) :944-949.
  • 5Cao Y Y, I.am J. Robust H control of uncertain Markovian jump systems with time-delay[J]. IEEE Trans. on Automatic Control,2000,45(1) :77 - 83.
  • 6Sun K, Li L, Panayotopoulos G, et al. Extension of jump Mark ov system estimation techniques [C] // Proc. of the American Control Conference, 2002 : 4209 - 4214.
  • 7Gupta V, Murray R M, Hassibi B. On the control of jump linear Markov systems with Markov state estimation [C] // Proc. of the American Control Conference, 2003 : 2893 - 2898.
  • 8Karan M, Shi P, Kay a C Y. Transition probability bound for the sto chastic stability robustness of continuous and discrete-time Markovian jump linear systems[J]. Automatica,2006,42(12) :2159 - 2168.
  • 9He S, Liu F. L2-L fuzzy filtering for nonlinear time-delay jump systems with uncertain parameters [C] // Proc. of the Interna tional Conference on Inlelligent Systems and Knowledge Engineering, 2007 : 589 - 596.
  • 10Zhang L, Boukas E K, Lam J. Analysis and synthesis of Markov jump linear systems with time varying delays and partially known transition prohabilities[J]. IEEE Trans. on Automatic Control, 2008,53 (10) : 2458 - 2464.

二级参考文献2

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部