期刊文献+

基于个体差异移民的改进元胞遗传算法 被引量:7

Improved cellular genetic algorithm based on migration of different individuals
下载PDF
导出
摘要 针对灾变元胞遗传算法中的精英策略,在求解具有欺骗性的优化问题时易陷入次优解的情况,分析了几种移民策略。提出了一种基于个体差异的新移民策略,在灾变发生后,灾难区域以这种新的移民策略迁移个体。通过两个具有欺骗性典型函数的实验,表明在灾变机制元胞遗传算法中采用新的移民策略能提高数值优化函数的精度和收敛率,具有更好的全局搜索和局部搜索性。 It is prone to get stuck in local optima,while solving the optimization problem with deception by cellular genetic algorithms with disaster,in which an elitism is applied.Several migration strategies are analyzed,and a novel migration strategy is presented.After the disaster occurres,those different individuals that are elitism are placed in the disaster region.Two typical functions are tested.The experiment results show that the cellular genetic algorithms with new migration strategy can improve the optimization accuracy and convergence rate as well as have better characters of exploration and exploitation.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第3期690-693,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60963002) 航空科学基金(2008ZD56003) 江西省教育厅科技研究项目(GJJ08209)资助课题
关键词 元胞遗传算法 灾变 精英策略 多样性 cellular genetic algorithm disaster elitism strategy diversity
  • 相关文献

参考文献10

  • 1Alba E, Dorronsoro B, Giacobini M, et al. Decentralized cellular evolutionary algorithms [M] // Handbook of bioinspired algorithms and applications. CRC Press, 2005:565-591.
  • 2Dorronsoro B, Alba E. A simple cellular genetic algorithm for con- tinuous optimization[C]//Proc, of IEEE Congress on Evolutionary Computation, 2006 : 2838 - 2844.
  • 3Rudolph G, Sprave J. A cellular genetic algorithm with selfadjusting acceptance threshold [C]//Proc. of Genetic Algo- rithms in Engineering Systems : Innovations and Applications on IEEE,1995 :365 - 372.
  • 4Alba E, Dorronsoro B. The exploration/exploitation tradeoff in dynamic cellular genetic algorithms[J]. IEEE Trans. on Evolutionary Computation ,2005,9(2) : 126 - 142.
  • 5Alba E, Troya J. Cellular evolutionary algorithms: evaluating the influence of ratio[C]//Proe, of the 6th International Conference on Parallel Problem Solving from Nature, 2000 : 29 - 38.
  • 6Kirley M, Li X D, David G. Investigation of a cellular genetic algo rithm that mimics landscape ecology[M]// MacKay R. Simulated evolution and learning;. Berlin: Springer, 1999 : 90 - 97.
  • 7Kirley M. A cellular genetic algorithm with disturbance: optimization using dynamic spatial interactions[J]. Journal of Heuris tics ,2002,8(3) :321 - 342.
  • 8王秀坤,赫然,张晓峰.一种改进的最优保存遗传算法[J].小型微型计算机系统,2005,26(5):833-835. 被引量:8
  • 9Nakashima T, Ariyama T, Yoshida T, et al. Performance evaluation of combined cellular genetic algorinthms for function optimization problems[C]//Pruc. of the IEEE lnternational Symposium on Computation Intelligence in Robotics and Automation, 2003:295 - 299.
  • 10Ishibuchi H, Ohara K, Nojima Y. Examing the effect of ditism in cellular genetic algorithms using two eighorhood structure[M]// Parallel problem solving from nature. Berlin: Springer, 2008:459 - 467.

二级参考文献11

共引文献7

同被引文献67

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部