期刊文献+

基于相空间重构的负荷动态分析

Load Dynamic Analysis Based on Phase Space Restructuring
下载PDF
导出
摘要 负荷管理系统的主要目的是缓解目前电力供需紧张的矛盾。通过对负荷动态预测,优化负荷的配给,从而达到社会效益和经济效益的最佳。因此,准确地预测负荷动态变化是负荷管理的关键。针对该问题,根据实践的情况,提出了日(月)最大负荷率和日(月)最小负荷率,在此基础上,按相空间重构的负荷动态分析方法对负荷进行动态预测,模拟试验表明效果较好。 The load management system aims at alleviating the conflict between supply and demand in power supply. It strives for the best social and economic benefits by predicting the load and optimizing the load ration. Therefore, the key of load management lies in the accurate prediction of load changes. In respect to this question, we proposed the daily (and monthly) load maximum and minimum on a practical basis, and made a dynamic load prediction by phase space restructuring. Simulation test indicated that the effect was good.
作者 林意 程诚
出处 《淮海工学院学报(自然科学版)》 CAS 2011年第1期13-15,共3页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
关键词 负荷预测 相空间重构 时间延迟法 load prediction phase space restructuring time delay method
  • 相关文献

参考文献4

  • 1萧国泉.电力负荷预测[M].北京:中国电力出版社,2001..
  • 2吕金虎,陆君安,陈士华.混沌时间序列及其分析[M].武汉:武汉大学出版社,2002.
  • 3CASDAGLI M. Nonlinear prediction of chaotic time series[J]. Physiea D: Nonlinear Phenomena, 1989,35(5) : 335-356.
  • 4丁涛,周惠成.混沌时间序列局域预测模型及其应用[J].大连理工大学学报,2004,44(3):445-448. 被引量:7

二级参考文献16

  • 1刘洪,李必强.基于混沌吸引子的时间序列预测[J].系统工程与电子技术,1997,19(2):23-28. 被引量:29
  • 2中国水利部.水文情报预报规范[M].北京:中国水利水电出版社,2000.11-12.
  • 3FRASER A M,SWINNEY H L. Independent coordinates for strange attractors from mutual information [] Phys Rev:,1986,33:134-1140.
  • 4HENRY D I,ABARBANEL N M,RABINOVICH M I,et al. Distribution of mutual information [] Phys Lett:,2001,281:68-373.
  • 5GRASSBERGER P,PROCACCIA I. Measuring the strangeness of strange attractors [] Physica D,1983,9:89-208.
  • 6SANGOYOMI T B. Nonlinear dynamics of the Great Salt Lake:imensi
  • 7HENRY D L,ABARBANEL N M. The analysis of observed chaotic data in physical systems [J]. Rev of Modern Phys,1993,65(4):331-1392.
  • 8KIM H S,EYKHOLT R,SALAS J D. Nonlinear dynamics,delay times,and embedding windows [J]. Physica D,1999,127:8-60.
  • 9FARMER J D,SIDOROWICH J J. Predicting chaotic time series [J]. Phys Rev Lett,1987,59(8):45-848.
  • 10JAYAWARDENA A W,LI W K,XU P. Neighbourhood selection for local modeling and prediction of hydrological time series [J]. J of Hydrology,2002,258:0-57.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部