期刊文献+

一种基于基本矩阵估计的立体视觉中滤除误匹配的方法 被引量:2

A Robust False Matches Filtering Method of Stereo Images Based on the Fundamental Matrix Estimation
下载PDF
导出
摘要 根据基本矩阵建立两幅图像间的极线约束关系,能有效减少误匹配。噪声干扰和对应点中的误匹配使得基本矩阵的解精度降低。介绍了极线几何和基本矩阵理论,在最小中值平方法的基础上,提出一种基于匹配点对之间协因数的RANSAC(random sampling consensus)算法估计基本矩阵,有效解决了因误匹配导致的基本矩阵估计结果恶化问题。实验结果表明,所提出算法能有效滤除误匹配,具有良好的鲁棒性。 The false match can be eliminated with epipolar constraint relation set up between two images based on the fundamental matrix.Noise disturbance and correspondence outliers made the precision of the fundamental matrix very low.This paper introduced the theory of epipolar geometry and fundamental matrix and put forward a RANSAC algorithm to estimate the fundamental matrix based on the least median square method,effectively solving the deterioration problem for the fundamental matrix estimation induced by the false match.Experimental results prove that the algorithm proposed in the paper can effectively eliminate the false matches and is of good robust nature.
出处 《山东科技大学学报(自然科学版)》 CAS 2011年第1期16-20,共5页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(40871167) 国家西部1:5万地形图空白区测图工程项目(B2540)
关键词 图像匹配 基本矩阵 极线几何 最小中值平方法 image matching fundamental matrix epipolar geometry least median square method
  • 相关文献

参考文献7

  • 1ZHANG Z Y, DERICHE R, FAUGERAS O, et al. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[J].Artificial Intelligence,1995,78(1/2):87-119.
  • 2马颂德,张正友.计算机视觉:理论与算法基础[M].北京:科学出版社,1997.
  • 3周骥,石教英,赵友兵.图像特征点匹配的强壮算法[J].计算机辅助设计与图形学学报,2002,14(8):754-757. 被引量:57
  • 4FISCHLER M A,BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM,1981,24(6):381-395.
  • 5武汉大学测绘学院.误差理论与测量平差基础[M].武汉:武汉大学出版社,2003..
  • 6LOWED G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2) :91-110.
  • 7蔡涛,李德华,关景火.非标定图像的最优匹配方法[J].计算机工程与应用,2004,40(7):3-5. 被引量:3

二级参考文献13

  • 1[1]P H S Torr,D W Murray.The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix[J].International Journal of Computer Vision, 1997;24(3) :271~300
  • 2[2]P H S Torr,A Zisserman. Robust Computation and Parameterization of Multiple View Relations.ICCV,1998:727~732
  • 3[3]Z Zhang,R Deriche,O Faugeras et al.A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[J].Artificial Intelligence, 1995; 78: 87~ 119
  • 4[4]Z Zhang. Determining the epipolar geometry and its uncertainty:A review[J].The International Journal of Computer Vision, 1998; 27 (2):161~195
  • 5[5]G Scott,H Longuet-Higgins. An algorithm for associating the features of two images[C].In:Proc Royal Society London,1991 ;B244:21~26
  • 6[6]M Pilu. Uncalibrated Stereo Correspondence by Singular Value Decomposition[R].Technical Report HPL-97-96,Digital Media Department,HP Laboratories Bristol,1997-08
  • 7[7]S Gold,A Rangarajan,C P Lu et al. New algorithm for 2D and 3D point matching:Pose estimation and correspondence[J].Pattern Recognition, 1998 ;31 (8): 1019~1031
  • 8[8]C Harris,M Stephens.A combined corner and edge detector[C].In:Proc 4th Alvey Vision Conf,Manchester,U K, 1988:147~151
  • 9[9]R Sinkhom. A relationship between arbitrary positive matrices and doubly stochastic matrices[J].Ann Math Statist, 1964;35:876~879
  • 10[10]Marr,Poggio. A Computational Theory of Human Stereo Vision[C].In:Proc Royal Society of London,1979;204 of B:301~328

共引文献82

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部