期刊文献+

两种均匀圆阵特性对比分析研究 被引量:2

Comparison and Analysis of Characteristics of Two Different Uniform Circular Arrays
下载PDF
导出
摘要 为了分析水平放置和竖直放置的两种不同的均匀圆阵的特性,首先在研究均匀圆阵阵列结构和数据模型的基础上,分别推导了两种不同均匀圆阵分辨率公式和克拉美罗下界(CRB)表达式。随后,基于导出的公式,系统研究了影响两种不同圆阵的分辨率、方位估计的CRB下界值的因素。最后,进行了大量的计算机仿真实验,验证了上述理论分析,为进一步深入研究均匀圆阵的固有特性打下了基础。 To analyze the characteristics of two different uniform circular arrays(UCAs),two kinds of different UCAs' resolution and CRB functions are derived on the basis of the study of array structure and data model.Then,basing on the study of the functions,the factors that influence the values of the resolution and CRB are systematically studied.A lots of the simulations are done to certify the theoretical analysis.The effort lays the foundation for further analysis.
作者 吴垚 陈辉
出处 《雷达科学与技术》 2011年第1期62-66,71,共6页 Radar Science and Technology
基金 国家杰出青年基金(No.60925005) 信息综合控制国家重点实验室基金
关键词 均匀圆阵 模糊性 克拉美罗下界 分辨率 uniform circular arrays ambiguity Cramer-Rao low bound(CRB) resolution
  • 相关文献

参考文献7

  • 1Schmidt R O. Multiple Emitter I,ocation and Signal Parameter Estimation[J]. IEHE Trans on Antennas and Propagation, 1986, 34(3):276- 280.
  • 2王鼎,李长胜,吴瑛.两均匀阵型在互耦影响下MUSIC算法的性能分析[J].雷达科学与技术,2010,8(2):163-170. 被引量:4
  • 3Godara I. C, Cantoni A. Uniqueness and I.inear Inde pendence of Steering Vectors in Array Space [J]. Journal of Acoustical Society of America, 1981, 70 (2) :467-475.
  • 4Abed-Merairn N, Gazzah H. Optimum Ambiguity Free Directional and Omnidirectional Planar Antenna Arrays for DOA Estimation[J]. IEEE Trans on Signal Processing, 2009, 57(10) :3942 -3953.
  • 5Gazzah H, Abed-Merairn K. Optimum Ambiguity- Free Isotropic Antenna Arrays [C]//IEEE Interna- tional Conference on Acoustics, Speech and SignalProcessing, Taipei:[s. n.], 2009..2157 -2160.
  • 6Chambers C, Tozer T C, Sharman K C, el al. Tern poral and Spatial Sampling Influence on the Estimates of Superimposed Narrowband Signals: When Less Can Mean More[J]. IEEE "Frans on Signal Processing, 1996, 44(12):3085- 3098.
  • 7Mathews C P, Zoltowski M D. Eigenslructure Tech niques for 2 -D Angle Estimation with Uniform CircularArrays[J]. IEEE Trans on Signal Processing,1994, 42(9) :2395-2407.

二级参考文献10

  • 1Swindlehurst A,Kailath T.A Performance Analysis of Subspace-Based Methods in the Presence of Model Error:Part I─The MUSIC Algorithm[J].IEEE Trans on SP,1992,40(7):1758-1774.
  • 2Swindlehurst A,Otterstein B,Kailath T.An Analysis of MUSIC and Root-MUSIC in the Presence of Sensor Perturbations[C] //Proc of the 23th Asilomar Conference on Signals,Systems and Computers,[s.l.] :[s.n.] ,1989:930-934.
  • 3Friedlander B.A Sensitivity Analysis of the MUSIC Algorithm[J].IEEE Trans on ASSP,1990,38(10):1740-1751.
  • 4Li F,Vaccaro R J.Sensitivity Analysis of DOA Estimation Algorithm to Sensor Errors[J].IEEE Trans on AES,1992,28(3):708-717.
  • 5See C M S.Method for Array Calibration in High-Resolution Sensor Array Processing[J].IEE Proc Radar Sonar Navig,1995,142(3):90-96.
  • 6Jaffer A G.Constrained Mutual Coupling Estimation for Array Calibration[C] //Proceeding of the 35th Asilomar Conference on Signals,Systems and Computers,Pacific Grove,CA:[s.n.] ,2001:1273-1277.
  • 7Friedlander B,Weiss A J.Direction Finding in the Presence of Mutual Coupling[J].IEEE Trans on AP,1991,39(3):273-284.
  • 8Sellone F,Serra A.A Novel Online Mutual Coupling Compensation Algorithm for Uniform and Linear Arrays[J].IEEE Trans on SP,2007,55(2):560-573.
  • 9廖斌,廖桂生,张静.一种互耦和相干源条件下的DOA估计方法[J].雷达科学与技术,2008,6(2):151-154. 被引量:4
  • 10苏卫民,顾红,倪晋麟,刘国岁,张光义.通道幅相误差条件下MUSIC空域谱的统计性能[J].电子学报,2000,28(6):105-107. 被引量:27

共引文献3

同被引文献28

  • 1Wang Yung-yi, Chen Wei-wei. A Low Complexity 2D-DOA Estimation Algorithm Using Signal Decom- position[C]//High Speed Intelligent Communication Forum, Nanjing, China:[s. n. ], 2012:1-4.
  • 2Hua Y, Sarkar T K, Weiner D D. An bShaped Ar- ray for Estimating 2-D Directions of Wave Arrival[J]. IEEE Trans on Antennas and Propagation, 1991, 39 (2) : 143-146.
  • 3Tayem N, Kwon H M. L-Shape 2-Dimensional Arri- val Angle Estimation with Propagator Method [J]. IEEE Trans on Antennas and Propagation, 2005, 53 (5) :1622-1630.
  • 4Kikuchi S, Tsuji H, Sano A. Pair-Matching Method for Estimating 2-D Angle of Arriva[ with a Cross-Cor- relation Matrix [J]. IEEE Antennas and Wireless Propagation Letters, 2006, 5 (1) = 35-40.
  • 5Gu Jian-feng, Wei Ping. Joint SVD of Two CrossCorrelation Matrices to Achieve Automatic Pairing in 2-D Angle Estimation Problems[J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6 (2) : 553- 556.
  • 6AI-Jazzar S O, McLernon D C, Smadi M A. SVD- Based Joint Azimuth/Elevation Estimation with Auto- matic Pairing[J]. Signal Processing, 2010, 90(5): 1669-1675.
  • 7Liang J L, Liu D. Joint Elevation and Azimuth Direc- tion Finding Using L-Shaped Array[J]. IEEE Trans on Antennas and Propagation, 2010, 58 (6): 2136- 2141.
  • 8A1-Jazzar S O, Muchkaev A, A1-Nimrat A , et al. Low Complexity and High Accuracy Angle of Arrival Estimation Using Eigenvalue Decomposition with Ex- tension to 2D AOA and Power Estimation[J]. EUR- ASIP Journal on Wireless Communications and Net- working, 2011, 2011(1) : 1-13.
  • 9Xin J M, Sano A. Computationally Efficient Sub- space-Based Method for Direction-of-Arrival Estima- tion Without Eigendecomposition[J]. IEEE Trans on Signal Processing, 2004, 52(4) :876-893.
  • 10Wang Guang-min, Xin Jing-min, Zheng Nan-ning, et al. Computationally Efficient Subspace-Based Meth- od for Two-Dimensional Direction Estimation with L-Shaped Array[J]. IEEE Trans on Signal Process-ing, 2011, 59(7):3197-3212.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部