期刊文献+

一种基于短采样数据的快速超分辨SSMUSIC算法

A New Low-Complexity Super-Resolution SSMUSIC Algorithm Based on Short Data Lengths
下载PDF
导出
摘要 基于多级维纳滤波(MSWF)理论,针对跳频通信或突发短时通信等情形下所造成的短采样数据,提出了利用CSA MSWF和Lanczos Algorithm快速实现在有限数据长度相较经典MUSIC算法角度估计性能更优、角度分辨率更高、算法鲁棒性更好的SSMUSIC算法。本文提出的MSWF SSMUSIC方法,不仅保持了SSMUSIC算法在短采样、低信噪比情形下角度估计性能更优、角度分辨率更高、算法鲁棒性更好等优点,而且避免了SSMUSIC算法为求得信号子空间、噪声子空间、协方差矩阵信号部分所对应的大特征值及噪声功率的估计而必须对高维协方差矩阵进行特征分解所带来的大的计算量的问题,扫除了SSMUSIC算法在短数据情形下由理论走向实际工程应用的主要障碍。仿真实验证明了该方法的有效性和可行性。 In this paper,we propose a new fast super-resolution SSMUSIC(Signal Subspace Scaled MUSIC) algorithm for short data lengths based on CSA MSWF(Correlation Subtraction Algorithm Multi-Stage Wiener Filter) theory.The proposed MSWF SSMUSIC method has better angular performance and lower computational cost than MUSIC,particularly in the low signal-to-noise ratio(SNR) and small measurement support regimes.Also,it has lower computational burden than SSMUSIC algorithm with slight performance loss.The proposed approach is quite suitable for short data lengths or when the environment is quite dynamic,with improved performance and reduced computational load.Numerical results are presented to illustrate the effectiveness and validity of the proposed methodology.
出处 《雷达科学与技术》 2011年第1期72-76,共5页 Radar Science and Technology
关键词 多级维纳滤波 短采样数据 测向 MUSIC算法 SSMUSIC算法 快速实现 correlation subtraction algorithm multi-stage Wiener filter short data lengths MUSIC algorithm SSMUSIC algorithm lower computational burden
  • 相关文献

参考文献11

  • 1Sehmidt R O. A Signal Sub,space Approach to Multipie EmitterLocation and Spectral Estimation [J]. Stanford: Stanford University, 1982.
  • 2Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation[J], 1EEE Trans on Antennas and Propagation, 1986, 34(5):276- 280.
  • 3Roy R, Paulraj A, Kailath T. ESPRIT A Subspace Rotation Approach to Estimation of Parameters of Cisoids in Noise[J]. 1EEE Trans on ASSP, 1986, 34 (5) : 1340-1341.
  • 4Roy R. Kailalh T. ESPP, IT-Estimalion of Signal Parameters via Rolational Invariance Techniques[J].[EEE Trans on ASSP, 1989, 37(7) :984-995.
  • 5MeCloud M, Scharf L. A New Subspace Identification Algorithm for High Resolution DOA Estimation[J]. IEEE Trans on Antennas and Propagation, 2002, 50 (10) :1382- 1390.
  • 6王赞,曹晨,汪学刚.一种基于正交信号的角估计算法[J].雷达科学与技术,2010,8(2):129-132. 被引量:2
  • 7Ricks D, Goldstein J S. Effeclive Implementation of Multi Stage Adaptive Wiener Filters[C]// Antenna Applications Symposium, Allerton Park, Illinois: IEEE Press, 2000:29-41.
  • 8Goldstein J S, Reed I S, Scharf L L. A Multistage Represen;ation of the Wiener Filter Based on Orthogonal Projecdons[J]. IEEE Trans on Information Theo ry, 1998. 44(7):2943 -2959.
  • 9Huang I.. Wu S, Feng D, et al. Low Complexity Method for Signal Subspace Fitting[J]. lEE Electronics 1.ettcrs, 2004, 40(14):847 -848.
  • 10Xu G, Kailath T. Fast Subspace Decomposition[J]. IEEE Trans on Signal Processing, 1994,42(3):539-551.

二级参考文献8

  • 1Fishler E,Haimovich A,Blum R,et al.MIMO Radar:an Idea Whose Time has Come[C] //Proc of 2004 IEEE International Radar Conference,Philadelphia,PE:[s.n.] ,2004:71-78.
  • 2Chen Duofang,Chen Baixiao,Zhang Shouhong.Multiple-Input Multiple-Output Radar and Sparse Array Synthetic Impulse and Aperture Radar[C] //IEEE of 2006 International Radar Conference,Shanghai,China:CIE,2006:1-4.
  • 3Stoica P,Nehorai A.MUSIC,Maximum Likelihood,and Cramer-Rao Bound[J].IEEE Trans on ASSP,1989,37(5):720-741.
  • 4Robey F C,Coutts S,Weikle D,et al.MIMO Radar Theory and Experimental Results[C] //Conference Record of the 38th Asilomar Conference on Signals,Systems and Computers,California:IEEE,2004:300-304.
  • 5Hung E K L,Turner R M.A Fast-Beamforming Algorithm for Large Arrays[J].IEEE Trans on AES,1983,19(4):598-606.
  • 6邵慧,田文涛,张浩,罗丰.MIMO雷达非均匀布阵的性能分析[J].雷达科学与技术,2008,6(4):247-250. 被引量:9
  • 7李绍滨,赵淑清,宿富林.非均匀天线阵的超分辨测向[J].哈尔滨工业大学学报,2001,33(6):834-837. 被引量:8
  • 8刘君,廖桂生,王洪洋.信源数目过估计和欠估计下MUSIC算法分析[J].现代雷达,2004,26(2):50-52. 被引量:26

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部