期刊文献+

人工神经网络优化沙棘果酒主发酵工艺研究 被引量:7

Optimization of main fermentation of sea-buckthorn fruit wine by artificial neural network
下载PDF
导出
摘要 为了提高酿酒酵母发酵沙棘原汁的乙醇含量,该研究利用人工神经网络和正交试验相结合的方法,对酿酒酵母发酵沙棘原汁产乙醇工艺中的主要工艺参数发酵温度、基质的pH值、接种量和糖度进行了优化。试验结果表明,当发酵温度为28.5℃、pH值为3.7、接种量为0.18%、糖度为23%时,酿酒酵母发酵沙棘原汁产乙醇量最高,发酵液中的酒精度为14.0%vol。该研究提出了一种新的数据处理和分析方法,利用神经网络特有的自学能力,通过仿真、评估和优化,显著地提高了发酵液中的酒精度。 In order to increase the ethanol content in sea buckthom juice fermented by Saccharomyees cerevisiae, the fermentation conditions were optimized by the artificial neural network (ANN) and the orthogonal design. The optimal fermentation conditions were obtained as follows: fermentation temperature 28.5℃, pH value 3.7, inoculum 0.18% and sugar concentration 23%. Under these conditions, the ethanol content produced by S. cerevisiae fermentation in sea buckthom juice reached 14.0%vol. A novel method of data processing and analysis was put forward based on the ANN method, which can obviously increase the alcohol content through emulation, evaluation and optimization.
出处 《中国酿造》 CAS 北大核心 2011年第3期102-105,共4页 China Brewing
关键词 神经网络 酿酒酵母 发酵工艺 乙醇浓度 neural network Saccharomyces cerevisiea., fermentation technology ethanol content
  • 相关文献

参考文献16

  • 1李晓花,孔令学,刘洪章.沙棘有效成分研究进展[J].吉林农业大学学报,2007,29(2):162-167. 被引量:87
  • 2UPADHYAY NK, KUMAR R, MANDOTRA SK, et al. Safety and healing efficacy of Sea buckthom(Hippophae rhamnoides L.) seed oil on burn wounds in rats[J]. Food Chem Toxicol, 2009, 47(6): 1146-1153.
  • 3VINCZE I, BANYAI-STEFANOVITS E, VATAI G. Concentration of sea buckthorn(Hippophae rhamnoides L.)juice with membrane separation[J]. Sep Purif Teehnol, 2007, 57(3): 455-460.
  • 4SWIEGERS JH, KIEVIT RL, SIEBERT T, et al. The influence of yeast on the aroma of Sauvignon Blanc wine[J]. Food Microbiol, 2009, 26(2): 204-211.
  • 5牛广财,朱丹,李志江,左锋,杨宏志.沙棘果酒主发酵工艺的研究[J].中国酿造,2008,27(4):83-85. 被引量:10
  • 6李树志,鲁长征,山永凯,刘洪智,任蓓蕾.发酵条件对沙棘冰酒品质的影响[J].食品与机械,2009,25(4):128-130. 被引量:5
  • 7GEORGIOU SD. Orthogonal Latin hypercube designs from generalized orthogonal designs[J]. J Slat Plan Infer, 2009, 139(4): 1530-1540.
  • 8蒋益虹.荷叶黄酮的乙醇提取工艺优化研究[J].农业工程学报,2004,20(4):168-171. 被引量:57
  • 9Hervas-Martinez C, Martlnez-Estudillo F. Logistic regression using covariates obtained by product-unit neural network models [J]. Pattern Reeogn, 2007, 40(1): 52-64.
  • 10GUPTA KC, JIANMIN L. Robust design optimization with mathematical programming neural networks [J]. Comput Struct, 2000, 76 (4):507-516.

二级参考文献65

共引文献235

同被引文献66

  • 1马绍威.我国果酒业的现状及发展对策[J].中国食物与营养,2005,11(3):37-38. 被引量:29
  • 2顾立众.不同澄清剂对苹果醋澄清效果的研究[J].中国调味品,2005,30(6):34-37. 被引量:7
  • 3靳桂敏,林朝朋,钟瑞敏.岗稔黄酮苷在果酒发酵过程中稳定性研究[J].食品科技,2006,31(5):91-94. 被引量:9
  • 4鲁长征,曾端国,山永凯,刘洪智.沙棘干酒的降酸研究[J].国际沙棘研究与开发,2007,5(3):5-7. 被引量:4
  • 5郭爱克,神经计算科学[M].上海:上海科技出版社,2001:69-81.
  • 6周开利,康耀红.神经网络模型及其MATLAl3仿真程序设计[M].北京:清华大学出版社,2005.
  • 7Jones C A, Kelly D P. Growth of Thiobacillus ferrooxidans on fer- rous iron in ehenostat culture : influence of product and substrate inhibition[ J ]. J Chem Biotech, 1983,33 (4) :241-261.
  • 8Breed A W, Hansford G S. Modeling continuous bioleaching reac- tor [ J ]. Biotech Bioeng, 1999,64 ( 6 ) : 671-677.
  • 9Song Jian, Lin Jianqu, Ren Yilin, eta|. Competitive adsorption of binary mixture of Leptospirillum ferriphilum and Aeidithiobacillus caldus onto pyrite [ J]. Biotech Biopro Eng, 2010, 15(6): 923 -930.
  • 10Vapnik V. The nature of statistical learning theory[M]. Berlin: Springer Verlag,1995.

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部