期刊文献+

单位圆周上广义Fourier积分的收敛性(英文) 被引量:1

CONVERGENCE OF GENERALIZED FOURIER INTEGRAL ON THE UNIT CIRCLE
下载PDF
导出
摘要 本文研究了复平面单位圆上的广义Fourier积分.利用经典的Fourier分析的结果和Carleson定理,以及复平面上解析函数在高阶导数下直角坐标和极坐标之间的关系,我们得到了前面定义的广义Fourier积分的一个收敛定理.从而推广了直线上经典Fourier积分的收敛结果. The present article considers a generalized Fourier integral on the unit circle of complex plane.Based on the classical results of Fourier series and Carleson's theorem,and the relationships of high order derivatives between rectangular coordinates and polar coordinates of holomorphic functions in the complex plane,we obtain a convergence theorem of this kind of generalized Fourier integral.Our results generalize the classical results of Fourier integral on the real line.
出处 《数学杂志》 CSCD 北大核心 2011年第2期211-217,共7页 Journal of Mathematics
关键词 Carleson定理 FOURIER级数 广义Fourier积分 CAUCHY-RIEMANN方程 Carleson's theorem Fourier series generalized Fourier integral Cauchy-Riemann equations
  • 相关文献

参考文献5

  • 1Carleson L, On convergence and growth of partial sums of Fourier series[J]. Acta. Math., 1966, 116(1): 135-157.
  • 2JCrsboe O G, Mejlbro L. The Carleson-Hunt theorem on Fourier series[M]. Lecture notes in mathematics, Vol. 911, New York: Springer-Verlag, 1982.
  • 3Gong Sheng. Concise complex analysis[M]. Beijing: Peking University Press, 1996.
  • 4Zhong Yuquan. Functions of complex variables[M]. Chengdu: Sichuan Univeisity Press, 1995.
  • 5Pan Wenjie. Fourier analysis and its applications[M]. Beijing: Peking University Press, 2000.

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部