期刊文献+

关于Neyman-Pearson基本引理的几个注记 被引量:7

SOME NOTES ON NEYMAN-PEARSON LEMMA
下载PDF
导出
摘要 本文探讨了Neyman-Pearson基本引理.通过论证总体参数θ只有θ_0或θ_1两种可能时最优检验功效函数的唯一性,得到了两种假设T_1:θ=θ_0←→θ=θ_1和T_2:θ=θ_1←→θ=θ_0各自对应最优检验的两类错误概率可以互换的结论. In this article,we discuss the basic Neyman-Pearson Lemma.By the proof of theuniqueness of the best testing power function under the condition that the population parameterθtakes eitherθ_0 orθ_1,we obtain the conclusion that,as to the hypotheses T_1:θ=θ_0(?)θ=θ_1and T_2:θ=θ_1(?)θ=θ_0,the probabilities of two types of errors can be exchanged correspondingto the respect best tests.
机构地区 九江学院理学院
出处 《数学杂志》 CSCD 北大核心 2011年第2期357-361,共5页 Journal of Mathematics
基金 九江学院重点基金(06KJ1)资助科研课题
关键词 Neyman-Pearson基本引理 最优检验 随机化检验 功效函数 Neyman-Pearson basic lemma best test randomized test power function
  • 相关文献

参考文献2

二级参考文献8

  • 1赵林城.一类离散分布参数的经验Bayes估计的收敛速度[J].数学研究与评论,1981,5:59-69.
  • 2Epstein B. Statistical aspects of fracture problems [J]. Applied Physics, 1948, 19:140-147.
  • 3Easterling R.G. Exponential responses with double exponential distribution measurement error-A model for steam generator inspection [A]. Proceedings of the DOE Statistical Symposium[C]. U.S.Department of Engergy, 1978, 90-110.
  • 4Hsu D. A. Long-tailed distribution for position errors in navigation [J]. Applied Statistics, 1979, 28:62-72.
  • 5Dadi M. I, Marks R. J. Ⅱ. Detector relative efficiencies in the presence of Laplace noise [J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, 23:568-582.
  • 6Bain L. J. , Engelhardt M. Interval estimation for the two-parameter double exponential distribution[J]. Technometrics, 1973, 15:875-887.
  • 7韦来生.一类Gamma分布位置参数的经验Bayes估计的收敛速度[J].中国科技大学学报,1983,132:143-151.
  • 8Singh. R.S. Empirical Bayes estimation in Lebesgue-exponential families with rates near the best possible rate [J]. Ann. Statist. , 1979, 7:890-902.

共引文献15

同被引文献66

引证文献7

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部