期刊文献+

随机微分方程解的二次型估计 被引量:1

Quadratic Estimation to Solution of Stochastic Differential Equations
下载PDF
导出
摘要 由于随机微分方程(SDE)的解析解求解困难,所以推导SDE解的不等式估计式是十分必要的.在随机系统的稳定性分析和控制设计中,李亚普诺夫函数常常采用二次型函数.本文把SDE解的传统的欧几里德范数形式估计式推广到SDE解的二次型估计式,包括解的矩估计和几乎必然估计.我们分别在加权线性增长条件和加权单边增长条件下给出了二次型矩估计式以及样本李亚普诺夫指数的上界表达式. Since most stochastic differential equations(SDE) are not explicitly solvable,it is very important to find the estimation of the solution in the form of inequalities.In the research on stability analysis and control design of the stochastic systems,Lyapunov functions often take the quadratic forms.The aim of this paper is to extend the estimation from the classical Euclidean form to the quadratic form,including moment estimation and almost surely estimation of the SDE solution.As the results,the upper limits of moment estimation and sample Lyapunov index in quadratic function of solution are given under weighted linear growth condition and weighted one-side growth condition,respectively.
出处 《工程数学学报》 CSCD 北大核心 2011年第1期101-108,共8页 Chinese Journal of Engineering Mathematics
关键词 随机微分方程 矩估计 几乎必然估计 二次型 stochastic differential equations moment estimation almost surely estimation quadratic form
  • 相关文献

参考文献10

  • 1Mao X. Stochastic Differential Equations and Applications[M]. Chichester: Horwood Publishing, 1997.
  • 2Muhando E B, Tomonobu S, Hiroshi K, et al. Augmented LQG controller for enhancement of online dynamic performance for WTG system[J]. Renewable Energy, 2008, 33(8): 1942-1952.
  • 3Bishwal J P N. Large deviations inequalities for the maximum likelihood estimator and the Bayes estimators in nonlinear stochastic[J]. Statistics and Probability Letters, 1999, 43:207-215.
  • 4江明辉,沈轶,廖晓昕.变时滞随机微分方程的指数稳定性[J].工程数学学报,2006,23(6):961-965. 被引量:7
  • 5李宏飞,周军.一类线性中立型摄动系统基于LMI方法的反馈镇定[J].工程数学学报,2006,23(4):663-670. 被引量:2
  • 6赵琳,罗汉,刘京.加权马氏距离判别分析方法及其权值确定——旅游信息服务系统的智能推荐[J].经济数学,2007,24(2):185-188. 被引量:16
  • 7胡良剑,赵伟国,冯玉瑚.伊藤型模糊随机微分方程[J].工程数学学报,2006,23(1):52-62. 被引量:5
  • 8Has'minskii R Z. Stochastic Stability of Differential Equations[M]. Alphen aan den Rijn, The Netherlands: Sijtjoff and Noordhoff, 1980.
  • 9Mao X. Lyapunov's second method for stochastic differential equations[C]// Proceedings of International Conference on Differential Equations, edited by B. Fiedler, K. Groger and J. Sprekels, World Scientific, 2000, 1:136-141.
  • 10Bensoussan A, Turib J. Stochastic variational inequalities for elasto-plastic oscillators[J]. Comptes Rendus Mathematique, 2006, 343(6): 399-406.

二级参考文献32

  • 1李宏飞,罗学波.具有非线性扰动的中立型系统的鲁棒稳定性[J].西南师范大学学报(自然科学版),2004,29(4):539-544. 被引量:6
  • 2李宏飞,罗学波.中立型线性系统基于观测状态的反馈控制器设计[J].兰州理工大学学报,2004,30(4):134-137. 被引量:2
  • 3朱惠倩.聚类分析的一种改进方法[J].湖南文理学院学报(自然科学版),2005,17(3):7-9. 被引量:15
  • 4吴从忻 马明.模糊分析学基础[M].北京:国防工业出版社,1991.56-66.
  • 5Kwakernaak H.Fuzzy random variables[J].Inform Sci,1978,15:1-29.
  • 6Puri M L,Ralescu D A.Fuzzy random variables[J].J Math Anal Appl,1986,144:409-422.
  • 7Klement E P,Puri M L,Ralescu D A.Limit theorems for fuzzy random variables[J].Proc Roy Soc London,1986,A407:171-182.
  • 8Feng Y.Convergence theorems for fuzzy random variables and fuzzy martingales[J].Fuzzy Sets and Systems,1999,103:435-441.
  • 9Nather W.Linear statistucal inference for random fuzzy data[J].Statistics,1997,29:221-240.
  • 10Feng Y.Fuzzy stochastic differential systems[J].Fuzzy Sets and Systems,2000,115(3):351-363.

共引文献26

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部