期刊文献+

r-预不变凸函数的一个性质(英文) 被引量:1

A Characterization for r-Preinvex Function
原文传递
导出
摘要 首先建立了一类r-预不变凸函数的一个等价条件,利用该等价条件给出了二次连续可微的r-预不变凸函数的一个性质;在适当的假设下,证明了如下结果:设XRn是关于向量值函数的开不变凸集,η满足条件C,f:X→R是二次连续可微的函数且满足条件D.则f是关于η的r-预不变凸函数当且仅当对任意的x,y∈X,r[f(y)T(x,y)]2+η(x,y)T 2f(y)η(x,y)≥0。本文的主要结果推广并改进了一些已有的主要结论。 In this paper,an equivalent condition for a class of r-preinvex function is established.A characterization for a twice continuously dierentiable r-preinvex function is obtained by the equivalent condition.Under some suitable conditions,the following result has been proved: Let XRn be open invex set with respect to η:X×X→Rn and η satisfy condition C.f defined on X is twice continuously dierentiable and satisfies condition D.Then f is r-preinvex function with respect to η if and only if x,y∈X,r[f(y)T(x,y)]2+η(x,y)T2f(y)η(x,y)≥0.Our results improve and generalize some known results.
出处 《重庆师范大学学报(自然科学版)》 CAS 2011年第2期1-4,10,共5页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.10771228) 重庆市自然科学基金(No.2010BB2090) 重庆市教委科研基金(No.kJ100608)
关键词 不变凸集 R-凸函数 预不变凸函数 r-预不变凸函数 invex set; r-convex function; preinvex function; r-preinvex function
  • 相关文献

参考文献7

  • 1Avriel M. rconvex Functions [ J]. Mathematical Programming, 1972,2 : 309-323.
  • 2Benisrael A, Mond B. What is invexity? [ J ]. Bulletin of Australian Mathematical Society, 1986,28 : 1-9.
  • 3Weir T, Mond B. Preinvex functions in Multi-objective Optimization[ J ]. Journal of Mathematical Analysis and Applications, 1988,136:29-38.
  • 4Weir T, Jeyakumar V. A class of nonconvex functions and mathematical programming[ J ]. Bulletin of Australian Mathematical Society, 1988,38 : 177-189.
  • 5Antczak T. r-preinvexity and r-invexity in Mathematical Pro- gramming [ J ]. Computers and Mathematics with Applica- tions, 2005,50: 551-566.
  • 6Mohan S R, Neogy S K. On Invex sets and Preinvex functions[ J]. Journal of Mathematical Analysis and Applica-tions, 1995,189:901-908.
  • 7Yang X M, Yang X Q, Teo K L. Characterizations and Applications of Prequasiinvex Functions [ J ]. Journal of Optimization Theory and Applications ,2001,110:645-668.

同被引文献13

  • 1焦合华.半(p,r)-(预)不变凸函数及其规划的鞍点最优性条件[J].江西师范大学学报(自然科学版),2007,31(4):394-399. 被引量:6
  • 2Mangasarian O L. A simple characterization of solution sets of convex programs[J].Operations Research Letters, 1998,7 (1) : 21-26.
  • 3Burke J V, Ferris M C. Characterization of solution sets ofconvex programs [J].Operations Research Letters, 1991,10 (1) :57-60.
  • 4Jeyakumar V,Yang X Q. On characterizing the solution sets of pseudolinear programs[J].Journal of Optimiza- tion Theory and Applications,1995,87(3):745-755.
  • 5Dinh N, Jeyakumar V, Lee G M. Lagrange multiplier characterizations of solution sets of constrained pseudo- linear optimization problem [J]. Optimization, 2006,55 (3) :241-250.
  • 6Yang X M. On characterization the solution sets of pseudoin- vex extremum problems[J]. Journal of Optimization Theory and Applications, 2009,140 (3) : 537-542.
  • 7Lalitha C S, Mehta M. Characterizations of solution sets of mathematical programs in terms of Lagrange multi- pliers[J]. Optimization, 2009,58 (8) : 995-1007.
  • 8Zhao K Q,Wan X,Yang X M. A note on characterizing solu- tion set of nonsmooth pseudoinvex optimization problems [EB/OL]. (2011-09-28) [2012-01-10]. http..//www, springer- link. eom/content/p3x8436/p8118268/.
  • 9Long X J, Huang N J. Lipschitz B-preinvex functions and nonsmooth muhiobjective programming[J]. Pacific Jour- nal of Optimization, 2010,7 (1) : 83-95.
  • 10Weir T, Mond B. Preinvex functions in multiple-objec- tive optimization[J]. Journal of Mathematical Analysis and Applications, 1988,136 ( 1 ) : 29-38.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部