期刊文献+

康普顿散射中的‘反冲电子’

An Analysis of 'Recoil Electron' in Compton Scattering
原文传递
导出
摘要 文章对康普顿散射后电子的状态进行讨论。依据散射电子所获得的能量分析散射后电子所处的状态,并按相对论效应和非相对论效应分别得到散射电子的速度表达式。根据电子获得的能量,讨论了散射电子的可能状态有:当所获得的能量为零时,电子保持原状态;当cosθ>1-(h v0E if-mE0ifc)2hv0时,电子保持原态并电离出获得的能量;当cosθ=1-(h v0E if-mE0ifc)2 hv0时,电子发生跃迁;当cosθ<1-(h v0E if-mE0ifc)2 hv0,根据量子力学中的选择定则,电子将保持原态并辐射出所获能量;当cosθ<1-(h v0 W-m0Wc)2hv0,电子电离并反冲出原子。 The state of the scattered electron in Compton scattering was discussed in this article.The final state of the scattered electron was analyzed according to its acquired energy in the Compton scattering.The expressions of velocity of the scattering electron have been deduced under the relativistic or non-relativistic approximations respectively.And then according to electron acquired energy in the Compton scattering,the possible state of the electron was described: when the scattered angle was zero,i.e.the acquired energy was zero,the electron would keep initial state;when cos θ〉1-Eifm0c2(hv0-Eif)hv0,the acquired energy would be radiated out and the electron would keep initial state;when cos θ=1-Eifm0c2(hv0-Eif)hv0,the electron would occur transition;when cos θ〈1-Eifm0c2(hv0-Eif)hv0,the acquired energy would be radiated out and the electron would keep initial state according to the selection rules in Quantum mechanics;when cos θ〈1-Wm0c2(hv0-W)hv0,the electron would be ionized and became a recoil electron.
作者 罗光
出处 《重庆师范大学学报(自然科学版)》 CAS 2011年第2期62-64,共3页 Journal of Chongqing Normal University:Natural Science
基金 重庆市教委科学技术研究项目(No.KJ080825) 重庆师范大学自然科学博士基金项目(No.08XLB015)
关键词 康普顿散射 反冲电子 跃迁 电离 Compton scattering; recoil electron; transition; ionization
  • 相关文献

参考文献8

  • 1马文蔚,解希顺,周雨青.物理学(第五版)(下册)[M].北京:高等教育出版社,2006,316-319.
  • 2罗光,周上祺,肖广渝,陈双扣.浅析影响康普顿谱线位置的因素[J].大学物理,2007,26(3):31-34. 被引量:2
  • 3罗光,周上祺,肖广渝,代丽.二次康普顿散射和产生双光子的康普顿散射[J].重庆师范大学学报(自然科学版),2007,24(1):52-55. 被引量:4
  • 4Sharaf J M. Practical aspects of compton scatter densitometry [ J ]. Applied Radiation and Isotopes, 2001,54 ( 5 ) : 801-809.
  • 5Kalliat M, Kwak C Y, Sehmidt P W,et al. Small angle X-ray scattering measurement of porosity in wood following pyrolysis [ J ]. Wood Science and Technology, 1983,17 (4) : 241-257.
  • 6ltou M, Sakurai Y, Ohata T, et al. Fermi surface signatures in the Compton profile of be [J].Journal of Physics and Chemistry of ,Solids, 1998,59( 1 ) : 99-103.
  • 7Zhu P, Pei X G, Babot D, et al, In-line density measurement system using X-ray Compton scattering [J].NDT and E International, 1995,28( 1 ) : 3-7.
  • 8Zhu P, Duvauchelle P, Pei X G, et al. X-ray Compton backscattering techniques for process tomography: inmging and characterization of materials [ J ]. Measurement Science and Technology, 1996,7 ( 3 ) : 281-286.

二级参考文献17

  • 1陶才德,杨莉.氢原子能级精细结构的微扰计算[J].西华师范大学学报(自然科学版),2004,25(4):455-458. 被引量:1
  • 2姜继咏,董咪达.大学基础物理教育的统计调查及其分析[J].重庆师范学院学报(自然科学版),1995,12(2):83-89. 被引量:2
  • 3ZHU P, PEI X G, BABOT D, et al. In-line Density Measurement Systerr Using X-ray Compton Scattering[J]. NDT& E International, 1995,28(1):3-7.
  • 4EVANS S H,MARTIN j B,BURGGRAF L W, et al. Nondestructive Inspection Using Compton Scatter Tomography[J]. IEEE Trans Nucl Sci NS, 1998,45:950-956.
  • 5DUKE P R, HANSON J A. Compton Scatter Densitometry with Polychromatic Sources [J]. Medical Physics, 1984,11(5):624-632.
  • 6HARDING G. X-ray Scatter Tomography for Explosives Detection [J]. Radiat Phys and Chem, 2004, 71:869-881.
  • 7CULLITY B D. Element of X-Ray Diffraction [M]. Boston: Addison-wesley , 1978.
  • 8PRATT R H . Tutorial on Fundamentals of Radiation Physics: Interactions of Photons with Matter [J]. Radiation Physics and Chemistry, 2004, 70: 595-603.
  • 9JAUCHAND J M, ROHLUCH F. The Theory of Photons and Electrons[M]. New York: Springer-Verulig,1976.
  • 10江藤秀雄.辐射防护[M].北京:北京原子能出版社,1986.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部