期刊文献+

新的预条件AOR迭代法的收敛性

CONVERGENCE OF THE NEW PRECONDITIONED AOR ITERATIVE METHOD
下载PDF
导出
摘要 讨论Z-矩阵线性系统的一类新的预条件AOR迭代法的收敛性。对预条件后的AOR迭代法的系数矩阵进行两种不同的分裂,得到了这两种分裂下的相对应的预条件AOR迭代法的收敛速度分别与基本的AOR迭代法的收敛速度之间的比较定理。最后对这两种分裂间的预条件迭代法的收敛速度进行比较,得出比较结果。 In this paper,we discuss the convergence of a new preconditioned AOR iterative method for Z-matrices linear systems.We consider two different AOR-type splittings for the coefficient matrix of the preconditioned AOR iterative method.Furthermore,we obtain comparison theorems of the convergence rates between the corresponding AOR iterative method of the two splittings and the basic AOR iterative method respectively.Finally,we get the comparison results of the convergence rates between the corresponding AOR iterative methods of the two splittings.
作者 周婷 郭文彬
出处 《井冈山大学学报(自然科学版)》 2011年第1期1-4,共4页 Journal of Jinggangshan University (Natural Science)
基金 国家自然科学基金(10771073)
关键词 Z-矩阵 AOR迭代法 预条件 谱半径 收敛性 AOR iterative method precondition spectral radius convergence
  • 相关文献

参考文献11

  • 1Wang G B, Zhang N, Tan F P. A new preconditioned AOR method for Z-matrices [J]. International Journal of Mathema-tics and Statistical Sciences, 2010, 2:2,71 -73.
  • 2Kotakemori H, Harada K, Morimoto M, et al. A comparison theorem for the iterative method with the prec-onditioner (I+Smax ) [J]. J. Compute. Appl. Math, 2002, 145(2): 373-378.
  • 3Wang X Z, Huang T Z, Fu Y D. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems [J]. J. Comput. Appl. Math., 2007, 206: 726 - 732.
  • 4Hadjimos A. Accelerated overrelaxation method [J]. Math. Comp, 1978, 32: 149-157.
  • 5Wu M J, Wang L, Song Y Z. Preconditioned AOR iterative method for linear systems [J]. Applied Numerical Mathematics, 2007, 57: 672-685.
  • 6Varga R S. Matrix Iterative Analysis [M]. Prentice-Hall, Englewood Cliffs, NJ, 1962.
  • 7Young D M. Iterative Solution of Large Linear Systems [J]. New York: Academic Press, 1971.
  • 8Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences [M]. Academic, New York, 1979.
  • 9Frommer A. Szyld D B, H-splitting and two-stage iterative methods[J]. Nuner. Math., 1992, 63: 345-356.
  • 10宋永忠.线性方程组的迭代解法(讲义)[M].南京:南京师范大学出版社,1992.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部