摘要
Let M be a compact connected oriented 3-manifold with boundary, Q1, Q2 C 0M be two disjoint homeomorphic subsurfaces of cgM, and h : Q1 → Q2 be an orientation-reversing homeomorphism. Denote by Mh or MQ1=Q2 the 3-manifold obtained from M by gluing Q1 and Q2 together via h. Mh is called a self-amalgamation of M along Q1 and Q2. Suppose Q1 and Q2 lie on the same component F1 of δM1, and F1 - Q1 ∪ Q2 is connected. We give a lower bound to the Heegaard genus of M when M' has a Heegaard splitting with sufficiently high distance.
Let M be a compact connected oriented 3-manifold with boundary, Q1, Q2 C 0M be two disjoint homeomorphic subsurfaces of cgM, and h : Q1 → Q2 be an orientation-reversing homeomorphism. Denote by Mh or MQ1=Q2 the 3-manifold obtained from M by gluing Q1 and Q2 together via h. Mh is called a self-amalgamation of M along Q1 and Q2. Suppose Q1 and Q2 lie on the same component F1 of δM1, and F1 - Q1 ∪ Q2 is connected. We give a lower bound to the Heegaard genus of M when M' has a Heegaard splitting with sufficiently high distance.
基金
The NSF(15071034)of China