期刊文献+

视频监控系统中运动目标跟踪算法研究 被引量:1

Moving target tracking in video monitoring system
下载PDF
导出
摘要 针对Camshift跟踪算法无法适应目标的高速运动、背景复杂和遮挡的情况,提出了一种改进算法。将Kim算法和卡尔曼滤波状态预测引入,用Kim算法提取运动目标区域信息,根据以往目标位置点的信息对当前帧中目标的可能位置预测,解决了传统Camshift算法的一些局限。实验表明改进算法在目标高速运动、遮挡情况下,仍能进行有效跟踪。 Aiming at several problems existing in the Camshift algorithm ,such as will track failure when the object is moving in a high speed, complex background and object is occlusioned seriously, a new improved tracking algorithm based on Camshift is proposed.we proposes an improved for the previous algorithm combined with Kim algorithm and Kalman ?lter. Kim is used for extracting the information of moving object and Kalman filter is used for estimating the position,that solved some limitations in the previous algorithm. Tracking results show that the improved algorithm is robust to high-speed target,complete covering.
出处 《电子设计工程》 2011年第4期137-139,共3页 Electronic Design Engineering
关键词 CAMSHIFT算法 Kim算法 卡尔曼滤波 目标跟踪 Camshift algorithm Kim algorithm Kalman filter object tracking
  • 相关文献

参考文献6

二级参考文献29

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2沈娟,杜宇人,高浩军.复杂背景下运动目标跟踪技术[J].电子工程师,2007,33(5):49-51. 被引量:2
  • 3Wixson L. Detecting salient motion by accumulating directionally- consistent flow[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 774-780.
  • 4Bakowski A, Jones G A. Video surveillance tracking using colour region adjacency graphs[J], IEE Conference Publication, 1999, 2(465): 794-798.
  • 5Fashing M, Tomasi C. Mean shift is a bound optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 471 -474.
  • 6Cheng Y Z. Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
  • 7Bradski G R. Computer vision face tracking for use in a perceptual user interface[J]. Intel Technology Journal, 1998, 2(2): 1-15.
  • 8Shan C F, Wei Y C, Tan T N, et al. Real time hand tracking by combining particle filtering and mean shift[A]. Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition[C]. Los Alamitos, CA, USA: IEEE Computer Society, 2004. 669-674.
  • 9Comaniciu D, Ramesh V, Meer R Real-time tracking of nonrigid objects using mean shift[A]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. Los Alamitos, CA, USA: IEEE Computer Society, 2000. 142-149.
  • 10Comaniciu D, Meer E Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.

共引文献72

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部