期刊文献+

基于动态模糊神经网络的变桨距系统辨识 被引量:4

Identification of Variable-pitch System Based on Dynamic Fuzzy Neural Network
下载PDF
导出
摘要 针对风力发电机组运行过程难以建立精确的数学模型的特点,将动态模糊神经网络应用于风力发电变桨距系统的辨识中。该模糊神经网络的结构基于扩展的径向基神经网络,在功能上等价于TSK模糊系统,其学习算法的最大特点是参数的调整和结构的辨识同时进行,且学习速度快。通过对风力发电变桨距系统中桨距角和风力机转速的非线性动态过程所进行的仿真实验,表明该方法在变桨距系统辨识中具有比较高的辨识精度和效率。 For it is difficult to establish the accurate mathematical model of wind power generation, iidentification of variable-pitch system based on dynamic fuzzy neural network is presented in this paper. The structure of the fuzzy neural network is based on the extended radial basis neural network, whose function is equivalent to TSK fuzzy systems. And the greatest feature of the learning algorithms is that to adjust the parameters and to identify the structure are at the same time, which learning speed is very fast. Through the nonlinear dynamic system simulation of the pitch angle and the wind turbine speed in the wind power system. The results show that the method has higher recognition accuracy and efficiency.
作者 陈彦 李月明
出处 《电气技术》 2011年第1期18-20,28,共4页 Electrical Engineering
关键词 风力发电 变桨距 动态模糊神经网络 辨识 wind power generation variable pitch dynamic fuzzy neural network identification
  • 相关文献

参考文献2

二级参考文献10

  • 1焦嵩鸣,韩璞,黄宇,李永玲.模糊量子遗传算法及其在热工过程模型辨识中的应用[J].中国电机工程学报,2007,27(5):87-92. 被引量:26
  • 2Wu SQ,Er M J,Gao Y A Fast Approach for Automatic Generation of Fuzzy Rules by Generalized Dynamic Fuzzy Neural Networks[J].IEEE Trans.Fuzzy Systems,2001,5(4):578-594.
  • 3Leontaritis I J,Billings S A.Input-Output Parametric Models for Nonlinear Systems,Part l:Deterministic Nonlinear Systems[J].Int J Contr,1985,41(2):303-344.
  • 4Sakamoto.R,,Senjyu.T,,Urasaki.N,,Fujita.H,,Sekine.H."Output Power Leveling of Wind Turbine Generator for All Operating Regions by Pitch Angle Control"[].IEEE Power Engineering Society General Meeting.2005
  • 5Hua Geng,Geng Yang,Weisong Zhou."Inverse-Sys- tem Control Approach for Variable-Speed Variable-Pitch Wind Generator"[].Conference Record of IECON.2007
  • 6Sorensen.P,,Hansen A.D,Rosas P.A.C."Wind models for simulation of power fluctuations from wind farms"[].Journal of Wind Engineering and Industrial Aerodynamics.2002
  • 7Horiuchi N,Kawahito T.Torque and power limitations of variable speed wind turbines using pitch control and generator power control[].IEEE Power Engineering Review.2001
  • 8董泽,黄宇,韩璞.量子遗传算法优化RBF神经网络及其在热工辨识中的应用[J].中国电机工程学报,2008,28(17):99-104. 被引量:41
  • 9耿华,杨耕.变速变桨距风电系统的功率水平控制[J].中国电机工程学报,2008,28(25):130-137. 被引量:66
  • 10刘志远,吕剑虹,陈来九.基于RBF神经网络的单元机组负荷系统建模研究[J].控制与决策,2003,18(5):637-640. 被引量:4

共引文献4

同被引文献27

  • 1刘宏伟,杨孝宗,曲峰,赵金华.非齐次泊松过程类软件可靠性增长模型[J].同济大学学报(自然科学版),2004,32(8):1071-1074. 被引量:7
  • 2林勇刚,李伟,崔宝玲.基于SVR增量学习算法的变桨距风力机系统在线辨识[J].太阳能学报,2006,27(3):223-229. 被引量:6
  • 3刘喜成 钟婉懿译 lyuMR.软件可靠性工程手册[M].北京:电子丁业出版社,1997..
  • 4Pai Ping-Feng, Hong Wei-Chiang. Software reliability forecasting by support vector machines with simulated annealing algorithms[J]. The Journal of Systems and Software, 2006, 79 (6):747-755.
  • 5伍世虔,徐军.动态模糊神经网络-应用与设计[M].北京:清华大学出版社,2008.
  • 6赵靖,张汝波,顾国昌.考虑故障相关的软件可靠性增长模型研究[J].计算机学报,2007,30(10):1713-1720. 被引量:20
  • 7Chang Yen-chang,Liu Ching-ti. A generalized JM model with applications to imperfect debugging in software reliability[J].Applied Mathematical Modelling,2009.3578-3588.
  • 8Goel A L,Okumoto K. Time-dependent error-detection rate model for software reliability and other performance measures[J].IEEE Transactions on Reliability,1979.206-211.
  • 9Goseva-Popstojanova K,Trivedi K S. Failure correlation in software reliability model[J].IEEE Transactions on Reliability,2000,(01):37-48.doi:10.1109/24.855535.
  • 10Chiu K-C,Huang Y-S,Lee T-Z. A study of software reliability growth from the perspective of learning effects[J].Reliability Engineering & System Safety,2008.1410-1421.

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部