期刊文献+

可拉伸为任意多边形的自由拉伸算法

A Free Form Stretched Arbitrary Polygons Stretching Algorithm
下载PDF
导出
摘要 针对图像特殊变换问题,即把一个N(N>3)边形的图像变换为另一个M(M>N)边形的图像的变形,提出了一种自由拉伸的算法。在该算法的基础上进行适当的变换,不仅能实现基本的几何变换,如缩放、错切、扭曲等,还可以实现N边形的图像变换为半圆或者为N边形(边为曲线)的图像等复杂的图像变换。实验证明该算法取得了很好的效果[1]。 For the image special transformations problem,as transforming one polygons of N(N3) sides image into another polygons of M(MN) sides image,a free form stretching algorithm is presented.The algorithm can also support the basic geometric transformations,for example: shearing,etc,and the complex image transformations of the transforming the polygons of N sides image into the semicircle or the polygons of N sides(the side is curve) image.The algorithm was proved by the experiments.
出处 《计算机与数字工程》 2011年第3期131-132,167,共3页 Computer & Digital Engineering
关键词 自由拉伸 图像变换 算法 四边形 free form stretching image transformations algorithm quadrangle
  • 相关文献

参考文献4

二级参考文献15

  • 1James D Foley, Andries van Dam, Steven K Feiner, et al. Computer Graphics: Principles and Practice ( Second Edition ) [ M ]. New York :Addison-Wesley Publishing Company Inc, 1993.820 - 832:92 - 99.
  • 2Catmull E. 3-D Transfomrations of images in scan line order [J ]. Computer Graphics, 1980,14(3) :279 - 285.
  • 3Smith A R. Planar2-pass texture mapping and warping [J]. Computer Graphics, 1987,21 (4) : 263 - 272.
  • 4Reeves WT. Particle systems: A technique for modeling a class of fuzzy objects [J]. Computer Graphics, 1982,17(3) :359 - 376.
  • 5Rosenfeld M. Special effects production with computer graphics and video techniques [J]. Computer Graphics, 1987,21(4) : 197 - 206.
  • 6Oka M K, Akio O, Yoshitaka K,Takashi T. Real-time manipulation of texture-mapped surfaces [J]. Computer Graphics, 1987,21 (4) : 181 -188.
  • 7Beier T, Neely S. Feature-based image metamorphosis [J]. Computer Graphics, 1992,26(2) :35 -42.
  • 8Grimson W. From Images to Surfaces [M]. Boston: MIT Press, 1981.
  • 9郭开鹤,桌面出版与设计,1996年,9卷,3期,38页
  • 10周秉锋,1993年

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部