期刊文献+

废纸与葡萄糖的亚临界水解动力学 被引量:1

Sub-critical hydrolytic dynamics of waste paper and glucose
下载PDF
导出
摘要 葡萄糖是从生物质资源出发制备乙醇的中间体。为了研究亚临界条件下水解废纸制备葡萄糖工艺的可行性,分别测定了300~320℃,280~310℃范围内废纸和葡萄糖的亚临界水解反应动力学。以匀相动力学模型对废纸中纤维素的水解及葡萄糖的水解数据进行拟合,拟合结果表明,水解速率常数均随温度的升高而增大;纤维素的水解活化能和葡萄糖水解活化能分别为60.16kJ/mol,79.59kJ/mol。研究结果表明:亚临界水中葡萄糖的水解活化能较废纸中纤维素的水解活化能高,故有利于葡萄糖的积累,但葡萄糖的水解速率常数较废纸中纤维素的大,故在实际的工艺运用中严格控制温度和反应时间可获得高产值的葡萄糖。 Glucose is the intermediates starting biomass to prepare ethanol.In order to study the feasibility of hydrolytic waste paper preparing glucose process under sub-critical conditions,sub-critical hydrolytic dynamics of waste paper and glucose in the range of 300~320℃,280~310℃ were determined respectively.Hydrolytic data of hydrolysis and glucose of cellulose in waste paper were fitted by the model of even dynamics.The results show that hydrolytic rate constant is enlarged by the improvement of temperature;hydrolytic energy of activation of cellulose and glucose were 60.16kJ/mol,79.59 kJ/mol respectively.The results also show that hydrolytic energy of activation of glucose in sub-critical water is higher than activation energy of hydrolysis of cellulose in waste paper.So this was advantageous to the accumulation of glucose.But the hydrolysis rate constant of glucose is bigger than that of cellulose in waste paper.High output value of glucose can be obtained by strict control of temperature and reaction time in actual process application.
出处 《中华纸业》 CAS 北大核心 2011年第6期46-50,共5页 China Pulp & Paper Industry
基金 华南理工大学中央高校基本科研业务费专项资金资助(2009ZM0184)
关键词 水解动力学 废纸 亚临界 葡萄糖 预处理工艺 玉米秸秆 原材料选择 微晶纤维素 sub-critical water hydrolysis dynamics waste paper glucose
  • 相关文献

参考文献8

二级参考文献67

共引文献110

同被引文献18

  • 1Gull6n B, Ydiiez R, Alonso J L, et al. L-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Biorosource Technology, 2008, 99 (2): 308-319.
  • 2John R P, Anisha G S, Nampoothiri K M, et al. Direct lactic acid fermentation: focus on simultaneous sacchariflcation and lactic acid production. Biotechnol Adv, 2009, 27 ( 2 ) : 145- 152.
  • 3Narita J, Nakahara S, Fukuda H, et al. Efficient production of L- ( + )-lactic acid from raw starch by Streptococcus boris 148. Journal of Bioscience and Bioengineering, 2004, 97 (6) : 423- 425.
  • 4Tanaka T, Hoshina M, Tanabe S, et al. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Biorosour Technol, 2006, 97 (2): 211-217.
  • 5Kojima Y, Yoon S L. Improved enzymatic hydrolysis of waste paper by ozone pretreatment. Journal of Material Cycles and Waste Management, 2008, 10(2) : 134-139.
  • 6Zhang Y, Chen X, Luo J, et al. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresource Technology, 2014, 158 (2) : 396-399.
  • 7Zhang Y, Chen X, Qi B, et al. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions. Bioresouree Technology, 2014, 163(4) : 160-166.
  • 8Budhavaram N K, Fan Z. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresource Technology, 2009, 100 (23) : 5966-5972.
  • 9Park E Y, Anh PN, Okuda N. Bioconversion of waste office paper to L ( + )-lactic acid by the filamentous fungus Rhizopus oryzae. Bioresource Technology, 2004, 93(1): 77-83.
  • 10Ouyang J, Ma R, Zheng Z, et al. Open fermentative production of l-lactic acid by Bacillus sp. strain NLO1 using lignocellulosic hydrolyzates as low-cost raw material. Bioresource Technology, 2013,135:475-480.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部