期刊文献+

脱层板固有频率的有限元方法分析 被引量:3

NATRUAL FREQUENCIES ANALYSIS OF DELAMINATION PLANES WITH FINITE ELEMENT METHOD
下载PDF
导出
摘要 结合弹性材料修正后的H-R(Hellinger-Reissner)变分原理和二次插值函数,建立了平面坐标系下Hamilton正则方程推导了八节点等参元列式.考虑到脱层板的连接界面上应力和位移的连续性,将脱层板离散成上下两层,采用"分离合并"技术,建立脱层情况下板的控制方程.本文具体研究了脱层结构的固有频率问题,数值实例证明了本文方法的正确性.八节点等参元的使用不仅减少了节点数,同时也大大提高了计算效率. By combining the modified H-R variational principle for elastic material with the quadratic interpolation functions,the formulation of isoparametric element with 8-node for Hamilton canonical equation in the plane-coordinate was derived.The continuity of stresses and displacements on the interface between layers was applied to separate into top/bottom layers.By using the separating-combiaing method,the state equation with delamination situation was established.The natural frequencies of delaminated plate were studied and the numerical examples show that the method presented is correct.The method of using isoparametric element with 8-node for Hamilton canonical equation reduces the number of nodes,and improves the efficiency.
作者 但敏 卿光辉
出处 《动力学与控制学报》 2011年第1期7-11,共5页 Journal of Dynamics and Control
关键词 固有频率 HAMILTON正则方程 半解析法 八节点等参元 脱层 natural frequencies Hamilton canonical equation semi-analytical solution parametrical element with 8-node delaminaton
  • 相关文献

参考文献11

二级参考文献40

共引文献11

同被引文献55

  • 1高希光,孙志刚,廉英琦,宋迎东,朱如鹏.弱界面黏结通用单胞模型理论及应用[J].航空动力学报,2009,24(8):1684-1690. 被引量:3
  • 2孙志刚,宋迎东,廉英琦.弱界面粘结对复合材料有效性能的影响[J].航空动力学报,2005,20(6):915-919. 被引量:10
  • 3周星德,刘志军.用有限元法计算特征值问题的一种新的动态凝聚方法[J].动力学与控制学报,2006,4(2):151-155. 被引量:1
  • 4Z·ak A.A novel formulation of a spectral plate element for wave propagation in isotropic structures.Finite Elements in Analysis and Design,2009,45(10):650~658.
  • 5Park H W,Kim E J,Lim K L,Sohn H.Spectral element formulation for dynamic analysis of a coupled piezoelectric wafer and beam system.Computers and Structures,2010,88(9-10):567~580.
  • 6Fabro A T,Ritto T G,Sampaio R,Arruda J R F.Sto-chastic analysis of a cracked rod modeled via the spectral element method.Mechanics Research Communications,2010,37(3):326~331.
  • 7Lee U.Equivalent continuum representation of lattice beams:spectral element approach.Engineering Structures,1998,20(7):587~592.
  • 8Howson W P,Williams F W.Natural frequencies of frameswith axially loaded Timoshenko members.Journal of Sound and Vibration,1973,26(4):503~515.
  • 9Friberg P O.Coupled vibration of beams-an exact dynamic element stiffness matrix.International Journal for Numeri-cal Methods in Engineering,1983,19(4):479~493.
  • 10Banerjee J R,Williams F W.An exact dynamic stiffness matrix for coupled extensional-torsional vibration of structur-al members.Computers&Structures,1994,50(2):161~166.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部