期刊文献+

一类恒化器模型解的稳定性 被引量:1

Stability of Solutions for a Chemostat Model
下载PDF
导出
摘要 讨论一类含1个食饵和1个捕食者种群的恒化器模型的整体解.分析该模型解的一致有界性,运用线性化方法和Lyapunov函数方法研究该模型非负平衡点的局部渐近稳定性和全局渐近稳定性. The global solutions for a food chain chemostat model are discussed. Firstly, the uniform boundedness of solutions for this model is analyzed. Then, by using the linearization and Lyapunov function,the local and global stability of the nonnegative eauilibrium ooints for the model is studied.
作者 高宇
出处 《甘肃科学学报》 2011年第1期25-27,共3页 Journal of Gansu Sciences
关键词 捕食者—食饵 整体解 局部稳定性 全局稳定性 predator-prey global solution local stability global stability
  • 相关文献

参考文献9

  • 1Herbert D, Elsworth R, Telling R C. The Continuous Culture of Bacteria: A Theoretical and Experimental Study[J]. J Gen Mierobiol, 1956,14 z 1403-1418.
  • 2Novic A,Sziliand L. Description of the Chemostat[J]. Science, 1950,112:715-716.
  • 3Smith H, Waltman P. The Theory of the Chemostat[M]. Cambridge, Uk: Cambridge University Press, 1995.
  • 4Waltman P E. Competition Models in Population Biology[M]. Philadelphia:Society for Industrial ~ Applied Mathematics, 1984.
  • 5Taylor P A, Williams J L. Theoretical Studies on the Coexistence of Competing Species Under Continuous-Flow Conditions [J]. Can J Microbiol, 1975,21 t 90-98.
  • 6Pang Y H Peter, Wang Mingxi. Strategy and Stationary Patte- rns in a Three-Species Prey-Predator Model[J]. J Diff Eqs, 2004,200 : 245-273.
  • 7Murray J D. Mathematical Biology[M]. Berlin: Spring-Verlag, 1993.
  • 8Wang F, Hao C, Chen L. Bifurcation and Chaos in a Tessiet Type Food Chain Chemostat with Pulsed Imput and Washout [J]. Chaos, Solitos &Fractals, 2007,32: 1547-1561.
  • 9姜旭东,李宝麟.一类固定时刻脉冲微分系统Φ-有界变差解的唯一性[J].甘肃科学学报,2010,22(2):123-128. 被引量:8

二级参考文献7

共引文献7

同被引文献7

  • 1Aiello W G,Freedman H I. A Time-delay Model of Single-species Growth with Stage Structure[J]. Math. Boi1,1990,101:139-153.
  • 2Nisbet R M,Gurney W S C. The Systematic Formulation of Population Models for Insects with Dynamically Varying Instar Duration[J]. Theor. Pop. Biol, 1983,23 : 114-135.
  • 3Hastings A. Age-dependent Predation is not a Simple Process,I, Continuous Time Models[J]. Theor. Popul. Biol, 1983,23:47-62.
  • 4Hastings A, Delay in Recruitment at Different Trophie Levels, Effects on Stability[J].J. Math. Biol, 1984,21 : 35-44.
  • 5Hale J K. Ordinary Differential Equations[M]. Malabar FL:Krieger, 1980.
  • 6Murry J D. Mathematical Biology[M]. Berlin:Springer-Verlag, 1993.
  • 7姜旭东,李宝麟.一类固定时刻脉冲微分系统Φ-有界变差解的唯一性[J].甘肃科学学报,2010,22(2):123-128. 被引量:8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部