期刊文献+

基于浅层篇章结构的评论文倾向性分析 被引量:9

Sentiment Polarity Analysis of Reviews Based on Shallow Text Structure
下载PDF
导出
摘要 汉语评论文的特点使得可以利用情感主题句表示其浅层篇章结构,该文由此提出一种基于浅层篇章结构的评论文倾向性分析方法。该方法采用基于n元词语匹配的方法识别主题,通过对比与主题的语义相似度大小和进行主客观分类抽取出候选主题情感句,计算其中相似度最高的若干个句子的倾向性,将其平均值作为评论文的整体倾向性。基于浅层篇章结构的评论文倾向性分析方法避免了进行完全篇章结构分析,排除了与主题无关的主观性信息,实验结果表明,该方法准确率较高,切实可行。 We put forward an approach to recognizing sentiment polarity in Chinese reviews based on the shallow text structure that is represented by topic sentiment sentences.Considering the features of reviews,we identify the topic of a review using an n-gram matching approach.To extract topic sentiment sentences,we compute the semantic similarity of a candidate sentence and the ascertained topic,and meanwhile determine whether the sentence is subjective.A certain number of these sentences are selected as representatives according to their semantic similarity value with relation to the topic.The average value of the representative topic sentiment sentences is calculated and regarded as the sentiment polarity of a review.Experiment result shows that the proposed method is feasible and can achieve relatively high precision.
出处 《中文信息学报》 CSCD 北大核心 2011年第2期83-88,共6页 Journal of Chinese Information Processing
基金 中国传媒大学国家语言资源监测与研究中心有声媒体分中心科研项目(YZYS10-03)
关键词 浅层篇章结构 主题情感句 评论文 倾向性分析 情感 shallow text structure topic sentiment sentence review sentiment orientation analysis sentiment
  • 相关文献

参考文献13

  • 1姚天昉,程希文,徐飞玉,汉思·乌思克尔特,王睿.文本意见挖掘综述[J].中文信息学报,2008,22(3):71-80. 被引量:106
  • 2P. D. Turney. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews [C]//Proceedings of ACL 02, 40th Annual Meeting of the Association for Computational Linguistics. USA.. 2002: 417-424.
  • 3B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? Sentiment Classification using Machine Learning Techniques [C]//Proceedings of EMNLP-02, the Conference on Empirical Methods in Natural Language Processing. Philadelphia, USA: 2002: 79-86.
  • 4J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack. Sentiment Analyzer: Extracting Sentiments about a Given Topic using Natural Language Processing Techniques [C]//Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM-2003). Melhollrne. Flnrid: 2003: 427-434.
  • 5J. Wiebe. Learning subjective adjectives from corpora [C]//Proceedings of the 17th National Conference on Artificial intelligence. Menlo Park. Calif. AAAI Press, 2000 : 735-740.
  • 6S.-M. Kim and E. Hovy. Determining the Sentiment of Opinions [C]//Proeeedings of COLING-04, the Conference on Computational Linguistics (COLING- 2004). Geneva, Switzerland: 2004: 1367-1373.
  • 7J. Wiebe, E. Riloff. Creating Subjective and Objective Sentence Classifiers from Unannotated Text[C]//Proceedings of CICLING, Mexico City, Mexico: 2005: 486-497.
  • 8H. Yu and V. Hatzivassiloglou. Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences[C]// Proceedings of EMNLP-03, 8th Conference on Empirical Methods in Natural Language Processing. Sapporo, Japan: 2003: 129-136.
  • 9M. Hu, B. Liu. Mining and summarizing customer reviews[C]//Proceedings of the 10th ACM SIGKDD. Seattle, USA, 2004: 168-177.
  • 10C. Wang, J. Lu, G. Zhang. A semantic classification approach for online Product reviews[C]//Proceedings ot" the 2005 IEEE/WIC/ACM International Conference on web intelligence. Hongkong, China, 2005: 276- 279.

二级参考文献60

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 4姚天昉,等.一个用于汉语汽车评论的意见挖掘系统[A].中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集[C].北京:清华大学出版社,2006,260-281.
  • 5Bo Pang,Lillian Lee.2004.A sentimental education:Sentiment analysis using subjectivity summarization based on minimum cuts[A].In:Proceedings of the ACL 2004[C].2004.271-278.
  • 6Bo Pang and Lillian Lee.2005.Seeing stars:Exploiting class relationships for sentiment categorization with respect to rating scales[A].In:Proceedings of the ACL 2005[C].115.
  • 7Y.Mao,G.Lebanon,2007.Isotonic Conditional Random Fields and Local Sentiment Flow[A].In:The Neural Information Processing Systems (NIPS19)[C].2007.
  • 8Theresa Wilson,Paul Hoffmann,Swapna Somasundaran,et al.OpinionFinder:A system for subjectivity analysis[A].Demo in Human Language Technologies Conference/Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP 2005)[C].Vancouver,Canada:2004.
  • 9R.Herbrich,T.Graepel,and K.Obermayer.Large margin rank boundaries for ordinal regression[M].In:Advances in Large Margin Classifiers.chapter 7,MIT Press,2000.115-132.
  • 10W.Chu and S.S.Keerthi.New approaches to support vector ordinal regression[A].In:International Conference on Machine Learning (ICML-05)[C].145-152.

共引文献247

同被引文献91

引证文献9

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部