期刊文献+

汉语情感问题类型分类研究 被引量:1

Research on Chinese Sentiment Question Category Classification
下载PDF
导出
摘要 随着网络搜索引擎技术的飞速发展,对于问答系统的需求愈发迫切。而问答系统处理问题的第一步就需要分辨情感问题和非情感问题并对情感问题进行分类。该文首先分析了当前问答系统和问题分类领域的研究现状,总结了一些存在的问题。然后针对情感问题从三个方面进行分类。在语义层面,提取了三个关键词;在语法层面,通过规则的制定,将其分成五种疑问句类型;在领域层面,通过搜索引擎的相关网页数量来进行判断。再对综合上述三个方面所开发出的测试系统进行分析。实验结果表明:对于情感问题的分类,从三个层面进行分析比较全面。 With the development of search engine,the demand of question answering system becomes pressing.The first step of QA system dealing with question is judging whether a question is an opinion question or a non-opinion question and further classifying opinion questions.The paper firstly analyzes the current situation of QA system and Question Classification,and then summarizes some problems.We analyze the question in three layers.In the semantic layer,we extract three key words.In the syntactic layer,we classify the question into five typical question types by some rules.In the domain layer,we judge the domain by the number of related websites that are obtained via the search engine.Finally,based on three layers mentioned above,we develop a system for experiments and further analysis.The result of experiments shows that for the classification of opinion question,the proposed three-layer-scheme is very useful.
出处 《中文信息学报》 CSCD 北大核心 2011年第2期94-98,104,共6页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60773087)
关键词 情感问题 问答系统 问题分类 自然语言处理 opinion question QA system question classification natural language processing
  • 相关文献

参考文献7

  • 1SOMASUNDARAN S, WILSON T, WIEBE J, et al. QA with attitude: exploiting opinion type analysis for improving question answering in on-line discussions and the news [C]//Proceedings of the International Conference on Weblogs and Social Media. Boulder, Colorado,USA, 2007.
  • 2YU H, HATZIVASSILOGLOU V. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences[C]// Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. Sapporo, Japan, 2003: 129-136.
  • 3Kim, S-M and Hovy, E;. Identifying Opinion Holders for Question Answering in Opinion Texts[C]//Proceedings of AAAI-05 Workshop on Question Answering in Restricted Domains. 2005.
  • 4Lun-Wei Ku etc. Question Analysis and Answer Passage Retrieval for Opinion Question Answering Systems[C]//Computatlonal Linguistics and Chinese Language Processing Vol. 13, No. 3, September 2008: 307-326.
  • 5郑实福,刘挺,秦兵,李生.自动问答综述[J].中文信息学报,2002,16(6):46-52. 被引量:165
  • 6姚天防,聂青阳,李建超,等.一个用于汉语汽车评论的意见挖掘系统[c]//中文信息处理前沿进展一中国中文信息学会二十五周年学术会议论文集.北京:清华大学出版社,2006,260-281.
  • 7张刚,刘挺,郑实福,等.开放域中文问答系统的研究与实现[c]//哈尔滨工业大学信息检索研究室论文集,第一卷,2003.

二级参考文献11

  • 1[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 2[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178
  • 3[10]Soo-Min Kim, ae-Ho Baek, Sang-Beom Kim, Hae-Chang Rim Question Answering Considering Semantic Categories and Co-occurrence Density. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 4[11]Marius Pasca, Sanda Harabagiu. High-Performance Question/Answering. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval ( Sigir-01 ). New Orleans, LA. September 9 - 13,2001
  • 5[1]Ittycheriah,M. Franz,W-J Zhu,A. Ratnaparkhi. IBM's Statistical Question Answering System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 6[2]D. Elworthy. Question Answering Using a Large NLP System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 7[3]L. Wu,X-j Huang,Y. Guo,B. Liu,Y. Zhang. FDU at TREC-9:CLIR,Filtering and QA Tasks. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 8[4]R.J. Cooper, S. M. Rüger. A Simple Question Answering System. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 9[5]C.L.A. Clarke, G. V. Cormack, D. I. E. Kisman, T. R. Lynam. Question Answering by Passage Selection. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 10[6]S-M Kim,D-H Baek,S-B Kim,H-C Rim. Question Answering Considering Semantic Categories and CoOccurrence Density. Proceedings of the night Text Retrieval Conference(TREC-9)

共引文献172

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部