期刊文献+

地基土压缩系数的RBF神经网络预测 被引量:6

Prediction on compressibility coefficient of soil based on RBF neural network
下载PDF
导出
摘要 采用了输入层节点数为4、隐含层节点数为29、输出层节点数为1的RBF神经网络结构;RBF神经网络学习时,设置中心化方法为K-means聚类法,训练速率取0.15,加权种子数取2,Sigma参数取0.1,权重为0.2,最大迭代次数为16 000,误差均值控制为0.01.研究发现,训练RBF神经网络时,30组数据的土压缩系数的拟合值与实测值的相对误差为-2.540 0%~2.600 0%,有25组数据的相对误差为0,相对误差绝对值的平均值为0.185 14%;验证RBF神经网络时,土压缩系数的预测值与实测值的相对误差为-2.500 0%~12.000 0%,相对误差绝对值的平均值为5.669 27%.对岩土工程,一般误差小于25%是可以接受的,该地基土压缩系数RBF神经网络预测模型是可行的. The neural network structure adopted is that,the node number of input layer of 4,the node number of hidden layer of 29,and the node number of output layer of 1 in the neural network structure are adopted.During the training of RBF neural network,the clustering method of K-means is used.The training speed of 0.15,the seed number of weighting of 2,the sigma parameter of 0.1,the weighting of 0.2,the maximum of iteration time of 16 000,and the average value of controlled of error 0.01 are adopted.It is found that the relative error of fitting value of compressibility coefficient compared with the observed value for 30 groups of independent variables in training RBF neural network model is between-2.540 0%~2.600 0%,and there are 25 groups of data whose relative error is 0,the absolute value of the relative error is 0.185 14%: In general,the error(25%) is feasible in geotechnical enginee-ring,so the prediction model of coefficient of compressibility with RBF neural network is feasible.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2011年第2期232-235,248,共5页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(50678128) 上海市教委科研创新项目(09YZ250) 上海海事大学科研基金资助项目(2009160) 港口 海岸及近海工程校重点学科项目(A2010030) 上海市第四期本科教育高地建设项目(B210008G)
关键词 压缩系数 神经网络 预测 误差 soil coefficient of compressibility neural network prediction error
  • 相关文献

参考文献11

  • 1Yitagesu F A, Van der Meer F, Van der Werff H, et al. Quantifying engineering parameters of expansive soils from their reflectance spectral[ J ]. Engineering geology, 2009,105 : 151 - 160.
  • 2Rayehowdhury P. Effeel of soil parameter uncertainty on seismic demand of lowrise steel buildings on dense silty sand[ J ]. Soil Dynamics and Earthquake Engineering, 2009,29: 1367 - 1378.
  • 3Sawicki A, Chybicki W. On aecuracv of prediction of prefailure deformations of granular soils[ J ]. Computers and Geotechnics, 2009,36 : 993 - 999.
  • 4王伟,宰金珉,卢廷浩.软土工后沉降双曲线模型与指数曲线模型分析[J].江苏大学学报(自然科学版),2008,29(2):173-176. 被引量:23
  • 5Samui P. Support vector machine applied to settlement of shallow foundations on eohesionless soils [J]. Con> puters and Geotechnic.s , 2008,35:419-427.
  • 6Jimenez R, Sitar N. The importance of distribution lypes on finite element analyses of foundation settlement[J].Computers and Geotechnics , 2009,36:474 - 483.
  • 7Aksoy C O. Chemical injection application at tunnel service shaft to prevent ground settlement induced by groundwater drainage: a case study [J] International Journal of Rock Mechanics & Mining Sciences, 2008,45 : 376-383.
  • 8Aksoy C O. Chemical injection application at tunnel service shaft to prevent ground settlement induced by groundwater drainage: a case study [J].International Journal of Rock Mechanics & Mining Sciences, 2008,45 : 376 -383.
  • 9陈晓平,俞季民.用土的物理性指标确定土的压缩系数[J].岩土工程学报,1991,13(4):81-86. 被引量:6
  • 10王慧玲,原培忠.用数理统计方法建立粘性土压缩系数与液性指数之间的线性回归方程[J].城市勘测,2001(3):5-7. 被引量:4

二级参考文献15

  • 1王伟,卢廷浩,王晓妮.软土路基线性加载沉降曲线的研究[J].岩土力学,2006,27(5):791-794. 被引量:21
  • 2骆祖江,刘金宝,张月萍,武永霞.深基坑降水与地面沉降变形三维耦合数值模拟[J].江苏大学学报(自然科学版),2006,27(4):356-359. 被引量:11
  • 3陈家银,1989年
  • 4茆诗松,回归分析及其试验设计(第2版),1986年
  • 5郑德如,回归分析和相关分析,1984年
  • 6Justo J L, Durand P. Settlement-time behavior of granular embankments[ J ]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24 (3) : 281-303.
  • 7Tan S A. Hyperbolic method for settlements in clay with vertical drains [ J ]. Canada Geotechnical Journal, 1994, 31(4) : 125 -131.
  • 8Mosleh A, Al-Shamrani. Applicability of the rectangular hyperbolic method to settlement predietions of sabkha soils [J]. Geotechnical and Geological Engineering, 2004, 22(4): 563-587.
  • 9Tan S A, Chew S H. Comparison of the hyperbolic and Asaoka observational method of monitoring consideration with vertical drains [J]. Soils and Foundations, 1996, 36(3) : 31 -42.
  • 10Xu Linrong. Ground settlement prediction with grey theory on guang-shen high-speed railway [ C ]//Proceedings of the 2004 International Symposium on Safety Science and Technology. Shanghai: Science Press USA Inc, 2004 : 962 - 966.

共引文献33

同被引文献56

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部