期刊文献+

基于CMAC神经网络的ECRH负高压脉冲电源自适应控制策略研究 被引量:1

Adaptive Control Strategy for ECRH Negative High-Voltage Power Supply Based on CMAC Neural Network
下载PDF
导出
摘要 为解决因四极管造成系统非线性和敏感性而导致ECRH系统中负高压脉冲电源控制效果不够理想的问题,利用CMAC神经网络设计了直接逆模型控制系统,并对CMAC跟踪动态给定的情况进行了仿真实验。结果表明,该学习控制策略改善了ECRH负高压脉冲电源的控制效果,具有较强的自学习和自适应能力且易于实现。 In order to solve the problem that the negative high-voltage power supply in an electron cyclotron resonance heating(ECRH) system can not satisfy the requirements because of the nonlinearity and sensitivity,the direct inverse model control strategy was proposed by using cerebellar model articulation controller(CMAC) for better control,and experiments were carried out to study the system performances with CMAC tracing dynamic signals.The results show that this strategy is strong in self-learning and self-adaptation and easy to be realized.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2011年第3期374-378,共5页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(60702023) 浙江省自然科学基金资助项目(Y1080776 Y1100119)
关键词 ECRH负高压脉冲电源 神经网络 逆模型 自适应 控制 ECRH negative high-voltage power supply neural network inverse model self-adaptation control
  • 相关文献

参考文献9

  • 1PRONKO S G E, BAGGEST D S. The 8.4 MW modulator/regulator power systems for the electron cyclotron heating facility upgrade at DIII-D [C].//The 18th IEEF/NPSS Symposium on Fusion Engineering. Albuquerque, New Mexico, USA:[s. n. ], 1999: 194-197.
  • 2NEREM A, KELLMAN D H, PRONKO S G E, et al. Circuit modeling and feedback controller development of the 8.4 MW modulator/regulator power system for the electron cyclotron heating facility upgrade at DIII-D [C].//The 14th Topical Meeting on the Technology of Fusion Energy. Park City, Utah, USA: [s. n], 2000:1 116-1 120.
  • 3PRONKO S G E , DELAWARE S , HARRIS TE, et al. The performance of the 8.4 MW modulator/regulator power systems for the electron cyclotron heating facility upgrade at DIII-D [C]. The 14th Topical Meeting on the Technology of Fusion Energy. Park City, Utah, USA: [s. n.], 2000:1 111-1 115.
  • 4黄懿赞.HT-7U超导托卡马克低混杂波系统高压电源的研究[D].北京:中国科学院,2001.
  • 5杜少武,丁同海,徐宁,刘宝华,高衡初.ECRH负高压脉冲电源系统控制特性研究[J].核聚变与等离子体物理,2003,23(3):181-185. 被引量:4
  • 6许力,蒋静坪.CSTR系统的基于CMFC神经元网络的学习控制研究[J].控制与决策,1992,7(2):131-136. 被引量:11
  • 7范晓明,张利,蔡晓辉,王国栋.小脑模型连接控制(CMAC)网络用于热轧带钢卷取温度控制[J].东北大学学报(自然科学版),2000,21(6):662-664. 被引量:9
  • 8蒋志明,林廷圻,黄先祥.一种基于CMAC的自学习控制器[J].自动化学报,2000,26(4):542-546. 被引量:24
  • 9马国进,齐冬莲.混合系统CMAC直接逆模型控制[J].电力系统及其自动化学报,2004,16(3):69-71. 被引量:1

二级参考文献18

  • 1Nerem A, Kellman D H, Pronko S G E, et al. Circuit Modeling and Feedback Controller Development of the 8.4 MW Modulator/Regulator Power System for the Electron Cyclotron Heating Facility Upgrade at D Ⅲ-D [A]. The 14th Topical Meeting on the Technology of Fusion Energy [C]. Park City:2000.10.
  • 2Pronko S G E, Baggest D. The 8.4 MW Modulator/Regulator Power Systems for the Electron Cyclotron Heating Facility Upgrade at D Ⅲ-D [A]. IEEE/NPSS Symp. on Fusion Engineering, Albuquerque [C]. New Mexico: 1999.
  • 3Chen F C,IEEE Trans Contr Syst Technol,1996年,4卷,1期,86页
  • 4蔡自兴,智能控制.基础与应用,1998年,192页
  • 5汪祥能,现代带钢连轧机控制,1996年,304页
  • 6李庆尧,带钢冷连轧机过程控制计算机及应用软件设计,1995年,97页
  • 7诸静,模糊控制原理与应用,1995年,1页
  • 8韩尧坤,现代热轧板带生产技术,1993年,181页
  • 9Savkin A V,Evans R J.A new approach to robust control of hybrid systems over infinite time[J].IEEE Transactions on Automatic Control,2001,43(9):1292-1296
  • 10Manon P,Valentin-Roubinet C,Gilles G.Optimal control of hybrid dynamical systems:application in process engineering[J].Control Engineering Practice,1998,10(2):133-149

共引文献44

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部