摘要
为解决因四极管造成系统非线性和敏感性而导致ECRH系统中负高压脉冲电源控制效果不够理想的问题,利用CMAC神经网络设计了直接逆模型控制系统,并对CMAC跟踪动态给定的情况进行了仿真实验。结果表明,该学习控制策略改善了ECRH负高压脉冲电源的控制效果,具有较强的自学习和自适应能力且易于实现。
In order to solve the problem that the negative high-voltage power supply in an electron cyclotron resonance heating(ECRH) system can not satisfy the requirements because of the nonlinearity and sensitivity,the direct inverse model control strategy was proposed by using cerebellar model articulation controller(CMAC) for better control,and experiments were carried out to study the system performances with CMAC tracing dynamic signals.The results show that this strategy is strong in self-learning and self-adaptation and easy to be realized.
出处
《原子能科学技术》
EI
CAS
CSCD
北大核心
2011年第3期374-378,共5页
Atomic Energy Science and Technology
基金
国家自然科学基金资助项目(60702023)
浙江省自然科学基金资助项目(Y1080776
Y1100119)
关键词
ECRH负高压脉冲电源
神经网络
逆模型
自适应
控制
ECRH negative high-voltage power supply
neural network
inverse model
self-adaptation
control