期刊文献+

基于人工免疫细胞模型的模糊聚类算法 被引量:3

Fuzzy Clustering Algorithm Based on Artificial Immune Cell Model
下载PDF
导出
摘要 传统的模糊c均值算法需要提前输入聚类个数,但输入错误的聚类数会产生错误的聚类结果。为此,提出一种基于人工免疫细胞膜型的模糊聚类算法。引入种群规模迭代与模糊聚类迭代相结合的双迭代思路,利用种群规模迭代指导聚类数的自动生成,在每次种群规模迭代中加入模糊聚类迭代,同时将克隆选择、抗体免疫抑制等操作融入计算过程。理论分析与仿真结果表明,该算法能搜寻到正确的聚类个数,具有较好的聚类效果。 It is necessary to provide the number of clusters before it is used in the traditional Fuzzy c-Means clustering algorithm(FCM),but error number of clusters will make error result.Aiming at this proplem,this paper presents a novel clustering algorithm based on artificial immune cell model.With an idea of dual iteration of a combination of population size iteration and fuzzy clustering iteration,this algorithm inducts auto-formation of clusters number by use of the population size iteration and solves the problem of inputting the number of clusters in advance.The fuzzy clustering iteration which is introduced in each iteration of population size,adds clonal selection as well as antibody immune suppression operation.Theoretical analysis and simulation results show that the algorithm can get correct number of clusters,and get better clustering effect.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第5期13-15,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60603026)
关键词 模糊聚类 人工免疫 模糊C均值 克隆选择 抗体免疫抑制 fuzzy clustering artificial immune fuzzy c-means clonal selection antibody immune suppression
  • 相关文献

参考文献5

  • 1高新波,裴继红,谢维信.模糊c-均值聚类算法中加权指数m的研究[J].电子学报,2000,28(4):80-83. 被引量:158
  • 2de Castro L N, von Zuben F J. Learning and Optimization Using the Clonal Selection Principle[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251.
  • 3张雷,李人厚.人工免疫C-均值聚类算法[J].西安交通大学学报,2005,39(8):836-839. 被引量:17
  • 4de Castro L N. An Evolutionary Immune Network for Data Clustering[C]//Proc. of IEEE Brazilian Symposium on Artificial Neural Networks. Washington D. C., USA: IEEE Computer Society, 2000: 84-89.
  • 5Pakhiraa K, Bandyopadhyay S, Maulikc U. A Study of Some Fuzzy Cluster Validity Indices, Genetic Clustering and Application to Pixel Classification Malay[J]. Fuzzy Sets and Systems, 2005, 155(2): 191-214.

二级参考文献16

  • 1刘静,钟伟才,刘芳,焦李成.免疫进化聚类算法[J].电子学报,2001,29(z1):1868-1872. 被引量:43
  • 2刘健庄,谢维信,黄建军,李文化.聚类分析的遗传算法方法[J].电子学报,1995,23(11):81-83. 被引量:27
  • 3Hall L O, Ozyurt I B, Bezdek J C. Clustering with a genetically optimized approach [J]. IEEE Transactions on Evolutionary Computation, 1999,3(2):103-112.
  • 4Babu G P, Murty M N. Clustering with evolution strategies [J]. Pattern Recognition,1994,2(27):321-329.
  • 5Sheng W, Tucker A, Liu X. Clustering with Niching genetic K-means algorithm [A]. Proceedings of Genetic and Evolutionary Computation Conference [C]. Berlin: Springer-Verlag, 2004. 162-173.
  • 6Krishna K,Murty M N. Genetic K-means algorithm [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 1999,29(3):433-439.
  • 7Maulik U, Bandyopadhyay S. Genetic algorithm-based clustering technique [J]. Pattern Recognition, 1997,30(7):1 109-1 119.
  • 8de Castro L N, von Zuben F J. Learning and optimization using the clonal selection principle[J]. IEEE Transaction on Evolutionary Computation, 2002, 6(3): 239-251.
  • 9Sugeno M, Yasukawa T. A fuzzy logic based approach to qualitative modeling [J]. IEEE Trans Fuzzy Systems, 1993,1(2): 7-31.
  • 10Blake C L, Merz C J. UCI repository of machine learning databases [EB/OL]. http://www.ics.uci. edu/~mlearn/MLRepository.html, 2004-08-10.

共引文献173

同被引文献43

  • 1黄敏明,林柏钢.基于遗传算法的模糊聚类入侵检测研究[J].通信学报,2009,30(S2):140-145. 被引量:5
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1262
  • 3ZADEH L A. Fuzzy sets[J]. Information and control, 1965, 8(3): 338-353.
  • 4RUSPINI E H. A new approach to clustering[J]. Information and control, 1969, 15(l): 22-32.
  • 5DUNN J C. A Fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Cybernetics, 1973, 3(3) : 32-57.
  • 6BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M~. New York: Plenum Press,1981.
  • 7YAGER R R, FILEV D P. Approximate clustering via the mountain methodEJT]. Systems, Man and Cybernetics, IEEE Transactions on, 1994, 24(8)= 1279-1284.
  • 8GHAFFARIAN S, GHAFFARIAN S. Automatic histogram-based fuzzy C-means clustering for remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97: 46-57.
  • 9BEZDEK J C. A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms[J]. IEEE transactions on pattern analysis and machine intelligence, 1980, 2(1): 1 8.
  • 10FALASCONI M, GUTIERREZ A, PARD() M, et al. A stability based validity method for fuzzy clustering[J]. Pattern Recognition, 2010, 43(4) : 1292-1305.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部