期刊文献+

基于概率分布及维度编码的关联规则挖掘

Association Rules Mining Based on Probability Distribution and Dimensions Coding
下载PDF
导出
摘要 设计一种基于二进制数及项目的支持度分布的Apriori改进算法BF-Apriori。该算法通过分析项目的概率分布并对项目集中的项目按概率从大到小进行排序,经维度编码为二进制数后,降低事务数据库的读取开销和存储开销,同时采用切片运算和剪枝技术降低规则挖掘运算的时间复杂度。实验结果表明,BF-Apriori算法降低了50%左右的存储开销及400%以上的执行时间,能提高数据挖掘的存储效率和运算速度。 This paper designs an improved algorithm named BF-Apriori based on Binary and item support distribution.The algorithm analyses the probability distribution of the items,sorts them in descending order of the probability,and applies dimensions coding to reduce the cost of the database transactions to read and store overhead.While the slice operation and effective pruning scheme are used to reduce the time complexity of rule mining computing.Experimental results show BF-Apriori algorithm reduces about 50% of the storage and more than 400% of the execution time,it can improve the storage efficiency and computational speed in data mining.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第5期65-67,70,共4页 Computer Engineering
基金 浙江省科技计划基金资助项目(2009C31066 2008C21093)
关键词 项目支持度分布 行向量逆序转换 列向量的转换 切片运算 逆序编码 item support distribution Reverse Transform on Row(RTR) Transform on Column(TC) slice operation reverse coding
  • 相关文献

参考文献5

二级参考文献20

  • 1田大新,刘衍珩,魏达.ARTNIDS:基于自适应谐振理论的网络入侵检测系统[J].计算机学报,2005,28(11):1882-1889. 被引量:8
  • 2Bertino E, Sandhu R. Database Security Concepts, Approaches, and Challenges[J]. IEEE Transactions on Dependable and Secure Computing, 2005, 2(1): 2-19.
  • 3Lee S Y, Low W L, Wong P R. Learning Fingerprints for a Database Intrusion Detection System[C]//Proceedings of the 7th European Symposium on Research in Computer Security. Zurich, Switzerland: [s. n.], 2002.
  • 4Jose F, Henrique M, Marco V. Detecting Malicious SQL[C]//Proc. of TrustBus'07. Regensburg, Germany: Is. n.], 2007.
  • 5Roichman A, Gudes P. Fine-grained Access Control to Web Dambases[C]//Proceedings of the 12th ACM Symposium on Access Control Models and Technologies. Sophia Antipolis, France: [s. n.], 2007.
  • 6Hu Yi, Brajendra P. A Data Mining Approach for Database Intrusion Detection[C]//Proceedings of the ACM Symposium on Applied Computing. Nicosia, Cyprus:[s. n.], 2004.
  • 7Kotropoulos C, Papaioannou A. A Novel Updating Scheme for Probabilistic Latent Semantic Indexing[C]//Proc. of SETN'06. Heraklion, Crete, Greece: [s. n.], 2006.
  • 8R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in large databases. ACM SIGMOD Int'l Conf. Management of Data, Washington, D. C., 1993.
  • 9Han J, Kamber. MData Mining: Concepts and Techniques.Beijing: High Education Press, 2001.
  • 10B. Goethals. Survey of frequent pattern mining. Helsinki Institute for Information Technology, Technical Report, 2003.

共引文献222

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部