期刊文献+

面向复杂拓扑的Relay查找机制

Complicated Topology-oriented Relay Lookup Scheme
下载PDF
导出
摘要 在应用层路由系统中,针对Internet的复杂拓扑问题,提出一种Cluster Overlay改进模型和拓扑感知的Relay查找机制。改进模型能根据复杂网络拓扑自适应地修正Cluster划分,使Cluster Overlay与Internet拓扑更接近。拓扑感知的Relay查找机制较好地利用了复杂拓扑现象,进一步改进了路径质量。实验结果显示,改进的Cluster Overlay模型和Relay查找机制具有较好的性能。 Based on complicated Internet topology,an improved Cluster Overlay model and a topology-aware Relay lookup scheme in application-layer routing system are proposed.The improved model can modify the clustering adaptively according to the complicated topology,thus making the Cluster Overlay more similar to Internet topology,and the Relay lookup scheme can utilize complicated Internet topology to further improve path quality.Experimental results show that the improved Cluster Overlay model and the Relay lookup scheme have excellent performance.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第5期100-102,共3页 Computer Engineering
基金 国家重大科技专项基金资助项目(2009ZX04009-022)
关键词 应用层路由 复杂拓扑 聚类分析 Relay查找 application-layer routing complicated topology cluster analysis Relay lookup
  • 相关文献

参考文献5

  • 1Ren Shansi, Guo Lei, Zhang Xiaodong. ASAP: An AS-aware Peer-relay Protocol for High Quality VoIP[C]//Proc. of ICDCS'06. Lisboa, Portugal: IEEE Press, 2006: 70-79.
  • 2Zhang Xiuwu, Lei Weimin, Chen Peipei. A Novel Peer Relay Lookup Scheme for SIP+P2P VoIP System[C]//Proc. of WICOM'09. Beijing, China: IEEE Press, 2009: 1-5.
  • 3Wang Guohui, Zhang Bo, Ng T S. Towards Network Triangle Inequality Violation Aware Distributed Systems[C]//N'oc. of SIGCOMM'07. Kyoto, Japan: ACM Press, 2007.
  • 4李娜,钟诚.基于划分和凝聚层次聚类的无监督异常检测[J].计算机工程,2008,34(2):120-123. 被引量:25
  • 5Ding C, He Xiaofeng. Cluster Merging and Splitting in Hierar-chical Clustering Algorithms[C]//Proc. of ICDM'02. Maebashi, Japan: IEEE Press, 2002: 171-178.

二级参考文献10

  • 1Portnoy L, Eskin E, Stolfo S J. intrusion Detection with Unlabeled Data Using Clustering[C]//Proceedings of ACM CSS Workshop on Data Mining Applied to Security. New York: ACM Press, 2001: 123-130.
  • 2Jiang Shengyi, Song Xiaoyu, Wang Hui, et al. A Clustering-based Method for Unsupervised Intrusion Detections[J]. Pattern Recognition Letters, 2006, 27(7): 802-810.
  • 3Huang Zhexue. Clustering Large Data Sets with Mixed Numeric and Categorical Values[C]//Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining. Singapore: World Scientific, 1997: 21-34.
  • 4Li Xiangyang, Ye Nong. A Supervised Clustering and Classification Algorithm for Mining Data with Mixed Variables[J], IEEE Trans. on Systems, Man, and Cybernetics, 2006, 36(2): 396- 406.
  • 5Kim M, Ramakrishna R S. Projected Clustering for Categorical Datasets[J], Pattern Recognition Letters, 2006, 27(12): 1405-1417.
  • 6Barbara D, Couto J. Li Y. Coolcat: An Entropy-based Algorithm for Categorical Clustering[C]//Proceedings of the 11th International Conference on Information and Knowledge Management. New York: ACM Press, 2002: 582-589.
  • 7Han Jiaweil Kamber M. Data Mining Concepts and Techniques[M].San Francisco: Morgan Kaufmann Publishers, 2000.
  • 8He Zengyou, Xu Xiaofei, Deng Shengchun. Discovering Clusterbased Local Outliers[J]. Pattern Recognition Letters, 2003, 24(9/10): 1641-1650.
  • 9KDD99 Cup Dataset[Z]. [1999-11-25]. http://kdd.ics.uci.edu/ databases/kddcup99.
  • 10罗敏,王丽娜,张焕国.基于无监督聚类的入侵检测方法[J].电子学报,2003,31(11):1713-1716. 被引量:64

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部