期刊文献+

子空间可能性聚类机制研究

Research on Subspace Possibilistic Clustering Mechanism
下载PDF
导出
摘要 可能性C-均值(PCM)聚类作为经典的基于原型的聚类方法,在处理高维数据集时性能骤降,无法检测出高维空间中嵌入的有效子空间。针对此不足,在PCM基础上引入子空间聚类机制,提出子空间可能性聚类算法SPC。该方法保留了PCM方法的优点,且对高维数据具有较好的适应性,能够有效检测各类所处的子空间。仿真实验验证了SPC算法的有效性。 The obvious shortcomings of Possibilistic C-Means(PCM) algorithm is that the performance will be significantly reduced for high dimensional data sets and it can not effectively identify the useful subspace embedded in the high dimensional space.In order to overcome the weakness,the subspace clustering mechanism is introduced and the Subspace Possibilistic Clustering(SPC) algorithm is presented.It not only has the advantages of PCM algorithm but also has the characteristic of the classic subspace clustering algorithms.Namely,it has good adaptability to high dimensional data,and can detect the subspaces for each cluster effectively.Simulation experiments with synthetic and real data sets demonstrate the effectiveness and the merits of SPC.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第5期224-226,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60903100) 江苏省自然科学基金资助项目(BK2009067)
关键词 高维数据 子空间聚类 特征加权 可能性聚类 high dimensional data subspace clustering feature weighting possibilistic clustering
  • 相关文献

参考文献5

  • 1Yang Jiong, Wang Wei, Wang Haixun, et al. δ-clusters: Capturing Subspace Correlation in a Large Data Set[C]// Proceedings of the 18th International Conference on Data Engineering. California, USA: [s. n.], 2002:517-518.
  • 2Krishnapuram R, Keller J. A Possibilistic Approach to Clustering[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 98-110.
  • 3Elaine Y C, Ching Waiki, Michael K N, et al. An Optimization Algorithm for Clustering Using Weighted Dissimilarity Measures[J]. Pattern Recognition, 2004, 37(5): 943-952.
  • 4Yu Jian, Cheng Qiansheng, Huang Houkuan. Analysis of the Weighting Exponent in the FCM[J]. IEEE Transactions on Systems, Man, and CyberneticsSPart B: Cybernetics, 2004, 34(1): 164-176.
  • 5单世民,闫妍,张宪超.基于k最相似聚类的子空间聚类算法[J].计算机工程,2009,35(14):4-6. 被引量:8

二级参考文献5

  • 1Rakesh A,Johannes G,Dimitrios G,et al.Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[C]//Proc.of SIGMOD'98.Washington,USA:ACM Press,1998.
  • 2Lance P,Ehtesham H,Huan L.Subspace Clustering for High Dimensional Data:A Review[C]//Proc.of SIAM'04.New York,USA:ACM Press,2004.
  • 3Karin K,Hans-p K,Peer K.Density-connected Subspace Clustering for High Dimensional Data[C]//Proc.of SIAM'04.New York,USA:ACM Press,2004.
  • 4Sudipto G,Rajeev R,Kyuseok S.ROCK:A Robust Clustering Algorithm for Categorical Attributes[C]//Proc.of ICDE'99.[S.1.]:IEEE Computer Society,1999.
  • 5Jiawei H,Kamber M.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部