摘要
可能性C-均值(PCM)聚类作为经典的基于原型的聚类方法,在处理高维数据集时性能骤降,无法检测出高维空间中嵌入的有效子空间。针对此不足,在PCM基础上引入子空间聚类机制,提出子空间可能性聚类算法SPC。该方法保留了PCM方法的优点,且对高维数据具有较好的适应性,能够有效检测各类所处的子空间。仿真实验验证了SPC算法的有效性。
The obvious shortcomings of Possibilistic C-Means(PCM) algorithm is that the performance will be significantly reduced for high dimensional data sets and it can not effectively identify the useful subspace embedded in the high dimensional space.In order to overcome the weakness,the subspace clustering mechanism is introduced and the Subspace Possibilistic Clustering(SPC) algorithm is presented.It not only has the advantages of PCM algorithm but also has the characteristic of the classic subspace clustering algorithms.Namely,it has good adaptability to high dimensional data,and can detect the subspaces for each cluster effectively.Simulation experiments with synthetic and real data sets demonstrate the effectiveness and the merits of SPC.
出处
《计算机工程》
CAS
CSCD
北大核心
2011年第5期224-226,共3页
Computer Engineering
基金
国家自然科学基金资助项目(60903100)
江苏省自然科学基金资助项目(BK2009067)
关键词
高维数据
子空间聚类
特征加权
可能性聚类
high dimensional data
subspace clustering
feature weighting
possibilistic clustering