期刊文献+

局部熵驱动区域主动轮廓的局部化框架 被引量:2

Localizing Framework of Region-based Active Contours Driven by Local Entropy
下载PDF
导出
摘要 提出一种将任意基于区域主动轮廓线模型进行局部化推广的框架。该框架的能量泛涵包含一个惩罚区域弧长的几何正则项和一个局部区域数据拟合项。根据图像像素空间排列的相关性,采用一个滑动窗函数提取图像局部熵,将图像从灰度空间转化到相应局部熵特征空间。在局部熵特征空间,采用另外的窗函数进行局部区域信息提取,从而推导出区域主动轮廓线模型的局部化框架。以CV模型为例推导局部化过程,并对2种常用的窗函数进行分析比较。实验结果表明,该方法可以成功分割一类包含有杂乱特征的图像。 This paper proposes a framework which allows any region-based active contours can be re-formulated in a local way.The energy function of this framework consists of a geometric regularization term that penalizes the length of region boundaries and a data fitting term in a local region.It uses a slide window function to extract the local entropy according to the relationship of spatial arrangements of image pixel,which can map intensity space of image to local entropy space.Another window function can be used to extract local region information so that getting the localizing region-based active contours framework.It takes CV model as an example to demonstrate it.The analysis and comparison of the two familiar window functions also can be done.Experimental results for images illustrate that this model can segment the cluttered images.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第5期230-231,234,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60773119)
关键词 图像分割 主动轮廓线 水平集方法 局部熵 窗函数 image segmentation active contours level set method local entropy window function
  • 相关文献

参考文献9

  • 1陈繁昌.图像处理与分析[J].北京:科学出版社,2009.
  • 2Li Chunming, Kao C Y, Gore John C, et al. Implicit Active Contours Driven by Local Binary Fitting Energy[C]//Proc. of IEEE Conference on Computer Vision Pattern Recognition. Piscataway, USA: IEEE Computer Society, 2007: 1-7.
  • 3Lankton S, Tannenbaum A. Localizing Region-based Active Contours[J]. IEEE Transactions on Image Processing, 2008, 17(11): 2029-2039.
  • 4Chan T F, Esedoglu S, Ni K Y. Histogram Based Segmentation Using Wasserstein Distances[C]//Proc. of Conference on Scale Space and Variational Methods in Compute Vision. Berlin, Germay: Springer-Verlag, 2008: 697-708.
  • 5周小舟,张加万,孙济洲.基于互信息和Chan-Vese模型的图像分割方法[J].计算机工程,2007,33(22):220-222. 被引量:7
  • 6方伟,陈会勇,陈宗海.基于非参数二维熵的主动轮廓模型[J].模式识别与人工智能,2005,18(6):717-722. 被引量:1
  • 7Chan T F, Vese L. Active Contours Without Edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
  • 8Zhu Songchun, Yuille A. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(1): 884-900.
  • 9Kuhen G, Weikert J, Beier M, et al. Fast Implicit Active Contour Models[C]//Proc. of the 24th DAGM Symposium on Pattern Recognition. Berlin, Germany: Springer-Verlag, 2002: 133-140.

二级参考文献24

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models. International Journal of Computer Vision, 1987, 1 (4):321-331.
  • 2Cohen L D, Bardinet E, Ayache N. Surface Reconstruction Using Active Contour Models. In: Proc of SPIE Conference on Geometric Methods in Computer Vision. San Diego, USA,1993, 2031-2038.
  • 3Ronfard R. Region-Based Strategies for Active Contour Models.International Journal of Computer Vision, 1994, 13(2): 229-251.
  • 4Ivins J, Porrill J. Statistical Snakes: Active Region Models. In:Proc of the 5th British Machine Vision Conference. York, England, 1994, Ⅱ: 377-386.
  • 5Chesnaud C, Refregier P, Boulet V. Statistical Region Snake-Based Segmentation Adapted to Different Physical Noise Models. IEEE Trans on Pattern Analysis and Machine Intelligence,1999, 21(11): 1145-1157.
  • 6Zhu S C, Yuille A L. Region Competition: Unifying Snakes,Region Growing, and Bayes/MDL for Multiband Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 1996, 18(9): 884-900.
  • 7Paragios N, Deriche R. Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach. In: Proc of the European Conference on Computer Vision. Dublin, Ireland,2001, Ⅱ: 224-240.
  • 8Yezzi A, Tsai A, Willsky A. A Statistical Approach to Snakes for Bimodal and Trimodal Imagery. In:Proc of the 7th IEEE International Conference on Computer Vision. Kerkyra,Greece, 1999, Ⅱ: 898-903.
  • 9Osher S,Sethian J A.Fronts Propagating with Curvature Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulation[J].Journal of Computational Physics,1988,79(1):12-49.
  • 10Chan T F,Vese L.Active Contour Without Edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.

共引文献6

同被引文献8

  • 1姜玉新,张远.超声医学高级教程[M].北京:人民军医出版社,2012:283.
  • 2冈萨雷斯.数字图像处理[M].3版.北京:电子工业出版社,2011.
  • 3Daniel Cremers,Mikael Rousson,Rachid Deriche.A Review of statistical approaches to level set segmentation:Integration Color,texture,motion and shape[J].International Journal of Computer Vision,2007,72(2):195-215.
  • 4Mitiche A,Ayed I B.Variational and Level Set Methods in Image Segmentation[M].New York:Springer,2011:105-107.
  • 5Li C M,Kao C Y,Gore J C,et al.Minimization of Region-scalable Fitting Energy for Image Segmentation[J].IEEE Transactions on Image Processing,2008,17(2):1940-1949.
  • 6Wang L,He L,Mishra A,et al.Active contours driven by local Gaussian distribution fitting energy[J].Signal Processing,2009,89(12):2435-2447.
  • 7Zhang K,Zhang L,Song H,et al.Active contours with selective local or global segmentation:a new formulation and level set method[J].Image and Vision Computing,2010,28(4):668-676.
  • 8王顺凤,冀晓娜,张建伟,陈允杰,方林,詹天明.改进的核磁共振图像分割与偏移场恢复耦合模型[J].中国图象图形学报,2012,17(9):1175-1180. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部