期刊文献+

基于压缩感知的ISAR像目标旁瓣抑制新方法 被引量:4

A New Way of Suppressing ISAR Imaging Sidelobe Based on Compressed Sensing
下载PDF
导出
摘要 在ISAR成像中,基于脉冲压缩的处理方法不可避免地会产生目标旁瓣现象。为了有效的抑制目标旁瓣,提高目标识别能力,文中提出了一种基于压缩感知理论的ISAR成像方法,该方法根据雷达原始回波信号与参考信号作差频处理后所得信号的稀疏特性,构造合理的傅里叶基矩阵实现雷达数据的稀疏表征,然后利用正交匹配追踪算法重构目标谱图,并得到目标旁瓣被有效抑制的目标ISAR像。最后,通过仿真实验验证了文中方法的有效性和可行性。 The technology of pulse compression, which always causes sidelobe, is widely used in radar system. In order to suppress target sidelobe availably and improve the imaging quality, a new method of ISAR imaging based on compressed sensing (CS) was proposed in this paper. In the method, we should firstly multiply the returned signal by conjugate of reference signal, construct a reasonable Fourier sparse basis matrix to realize the sparseness of radar data. Next, the spectrogram information was recovered by using the orthogonal matching pursuit algorithm(OMP), and the ISAR image whose sidelobe was suppressed successfully was got. Finally, the results with simulation data validated the feasibility and superiority of the approach.
出处 《弹箭与制导学报》 CSCD 北大核心 2011年第1期143-146,150,共5页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 国家自然科学基金(60971100) 陕西省自然科学基础研究项目(SJ08F10)资助
关键词 压缩感知 正交匹配追踪法 逆合成孔径雷达成像 旁瓣抑制 傅里叶基矩阵 compressed sensing OMP ISAR sidelobe suppression Fourier basis matrix
  • 相关文献

参考文献10

  • 1D L Donoho. Compressed sensing[J]. IEEE Trans. on Information Theory,2006,52(4) : 1289- 1306.
  • 2E Candes. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians, Madrid, Spain,2006 : 1433 - 1452.
  • 3E J Candes,J Romberg,Terence Tao, Robust uncertaintyprinciples: Exact signal reconstruction from highly incomplete frequency information's[J]. IEEE Trans. on Information Theory, 2006,52 (2) : 489 - 509.
  • 4E J Candes, J Romberg. Quantitative robust uncertainty principles and optimally sparse deeompositions[J]. Foundations of Compute Math,2006,6(2) :227-254.
  • 5石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 6侯颖妮,李道京,洪文.基于稀疏阵列和压缩感知理论的艇载雷达运动目标成像研究[J].自然科学进展,2009,19(10):1110-1116. 被引量:16
  • 7Li J un, Xing Mengdao,Wu Shunjun. Application of compressed sensing in sparse aperture imaging of radar[C]// APSAR, Xian, China, Oct, 2009 : 651 - 655.
  • 8F Zhu,Q Zhang,Y Xiang, et al. Compressive sensing in ISAR spectrogram data transmission [C]//APSAR, Xian, China, Oct, 2009 : 89 - 92.
  • 9保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2006.
  • 10喻玲娟,谢晓春.压缩感知理论简介[J].电视技术,2008,32(12):16-18. 被引量:39

二级参考文献95

  • 1黄源宝,李真芳,保铮.机载大斜视SAR的快速简易成像方法[J].西安电子科技大学学报,2004,31(4):543-546. 被引量:6
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3DONOHO D. Compressed sensing[J]. IEEE Trans. Information Theory, 2006, 52(4): 1289-1306.
  • 4CANDES E. Compressive sampling[C]/[Proceedings of the International Congress of Mathematicians. Madrid, Spain: [s.n.], 2006:1433- 1452.
  • 5CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. Information Theory, 2006, 52(4): 489-509.
  • 6TROPP J, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Trans. Information Theory, 2007, 53(12): 4655-4666.
  • 7ZOU J, GILBERT A C, STRAUSS M J, et al. Theoretical and experimental analysis of a randomized algorithm for sparse Fourier transform analysis[J]. Journal of Computational Physics, 2006, 211(2): 572 -595.
  • 8GAN Lu. Block compressed sensing of natural images[C]//Proceedings of the International Conference on Digital Signal Processing. [S.l.]: IEEE Press, 2007:403-406.
  • 9DONOHO D, TSAIG Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548.
  • 10FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE J-STSP,2007,1(4): 586-598.

共引文献805

同被引文献103

  • 1Schwartz J, Steinberg B. Ultrasparse, ultrawideband arrays[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998,45 (2) 376-393.
  • 2Fishler E, Haimovieh A, Blum R, et al. MIMO radar: an idea whose time has come[C]//Proeeedings of the IEEE Radar Conferenee. Newark, N J, USA: IEEE, 2004:71-78.
  • 3Candes E. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians. Madrid, Spain : [s. n. ], 2006 : 1433-1452.
  • 4Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52 (2) : 489- 509.
  • 5Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4): 1289- 1306.
  • 6Candes E J, Romberg J. Practical signal recovery from random projections[C]//Proceedings of SPIE. San Jose, CA, USA: SPIE,2005:56-74.
  • 7Donoho D L, Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86 (3): 533-548.
  • 8Kashin B. The widths of certain finite dimensional sets and classes of smooth functions[J]. Izv, Akad, Nauk SSSR, 1977,41(2) : 334-351.
  • 9Candes E J, Tao T. Near optimal signal recovery from random projections., universal encoding strate- gies[J]. IEEE Transactions on Information Theory, 2006,52 (12), 5406-5425.
  • 10Ender J H G. On compressive sensing applied to radar [J]. Signal Processing, 2010, 90 (5):1402- 1414.

引证文献4

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部