期刊文献+

基于核函数的层次聚类算法 被引量:4

A hierarchical clustering algorithm based on kernel function
下载PDF
导出
摘要 层次聚类算法是运行复杂度较高的聚类算法,基于不相似性测度的层次聚类算法不适合稀疏高维数据.结合核函数特点,提出了一种基于核函数的层次聚类算法.利用该算法,对稀疏高维数据进行了层次聚类对比,实验结果表明,该算法提高了层次聚类的准确率. Hierarchical clustering algorithm is a running complexity higher clustering algorithm,hierarchical clustering algorithm based on non-similarity measure is not suitable for high-dimensional sparse data.Combining features of kernel functions,A hierarchical clustering algorithm based on kernel function is raised.Using this algorithm,comparing hierarchical clustering results with high-dimensional sparse data,the experimental results show that the algorithm can improve the accuracy of hierarchical clustering.
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2011年第1期31-35,共5页 Journal of Jinan University(Natural Science & Medicine Edition)
基金 广东省科技计划项目(2009B010800036 2009B090300326) 广东省教育科研基金项目(BKYBJG20060235)
关键词 相似性 核函数 层次聚类 不相似性测度 similarity kernel function hierarchical clustering non-similarity measure
  • 相关文献

参考文献12

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1070
  • 2GELBARD R, GOLDMAN O, SPIEGLER I. Investigating diversity of clustering methods : An empirical comparison [ J ]. Data & Knowledge Engineering, 2007,63 ( 1 ) : 155 - 166.
  • 3KUMAR P, KRISHNA P R, BAPI R S, et al. Rough clustering of sequential data[ J]. Data & Knowledge En- gineering, 2007,3(2) : 183 - 199.
  • 4KENJIFUKUMIAU. A kernel method for hierarchical and non - hierarchical clustering [ C ] //Science of Modeling. Dec. 2003.
  • 5AIZERMAN M A, BRAVERMAN E M, ROZONOER L I. Theoretical foundations o the potential function method in pattern recognition learning [ J ]. Automation and Re- mote Control, 1964,25(6) ,821 - 837.
  • 6GIROLAMI M. Mercer Kernel - based Clustering in feature space [ J ]. IEEE Trans On Neural NetWorks, 2002, 13(3) :780 -784.
  • 7VAPNIK V N. The Nature of Statistical Learning Theory [M]. 2nd ed,New York: John Wiley and sons,1998.
  • 8KEARNS M, RON C. Algorithmic stability and sanitycheck bounds for leave -one -out cross validation[ C] // Proc 10th Conference on Computational Learning Theory. New York: ACM Press,1997 :152 - 162.
  • 9SAUNDERS C, STITSON M O,WESTON J,et al. Support vector machine - reference manual[ C ]//Department of Computer Science. Royal Holloway University of London, Egham, UK : Technical Report CSD - TR - 98 - 03, 1998.
  • 10张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195

二级参考文献2

共引文献1275

同被引文献31

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部