期刊文献+

智能教室中情境感知的多通道融合方法

Multichannel Fusion Model of Context Aware in Intelligent Classroom
下载PDF
导出
摘要 现有的智能教室中多通道融合方法普遍缺乏情境信息的感知能力,融合策略固定、简单,不能很好解决多通道输入的二义性、非精确、冲突性和时间偏序关系。针对以上问题,采用EMMA标注语言调整时序关系,用层次任务网络规划器HTN规划动作行为,用证据理论融合各个情感检测通道的检测结果,提出了一种通用可扩展的基于情境感知的多通道融合模型及方法。实验结果表明,该方法较好地解决了多通道学生情感检测的冲突性、二义性,提高了检测的精确性与正确性。 Human computer interaction multichannel-model based on video, audio, keyboard is prevalent in the intelligent classrooms available for teaching, but the existed human-computer interaction multichannel models generally lack context awareness and self-adaption, and its fusion strategy is fixed and simple. Therefore, they can not solve the problems of ambiguity, dubiety, conflict and temporal relations of multichannel inputs. Focusing on those problems, a context aware multi-channel fusion model which is universal and extensible is proposed in this paper. In the model, EMMA (extensible multi modal annotation) markup language is adopted to adjust temporal relations of multichannel inputs, HTN (hierarchical task net- work) is used to plan the input behavior, and evidence theory is employed to fuse the detection results of multichannel. Th.e result of this experiment proves that this method can solve the dubiety and conflict in multichannel students' emotion detection, and improve the accuracy and correctness of the detection result.
出处 《现代电子技术》 2011年第6期78-82,87,共6页 Modern Electronics Technique
基金 国家科技支撑计划课题(2007BAH09B05)
关键词 智能教室 情境感知 多通道信息融合 情感识别 intelligent classroom context aware multi-channel information fusion emotion recognition
  • 相关文献

参考文献7

二级参考文献50

  • 1Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience, 1991,3:71-86.
  • 2Etemad K,Chellappa R.Discriminant analysis for recognition of human face images[J].Journal of the Optical Society of America, 1997, 14:1724-1733.
  • 3Wiskott L,Fellous J M,Kuiger N,et al.Face recognition by elastic bunch graph matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997, 19:775-779.
  • 4Ojala T,Pietikainen M,Harwood D.A comparative study of texture measures with classification based on feature distributions[J].Pattern Recognition, 1996,29:51-59.
  • 5Ojala T,Pietikainen M,Maenpaa T.Gray scale and rotation invariant texture classification with Local Binary Patterns [C]//LNCS 1842: Computer Vision Proceedings, ECCV 2000.[S.l]:Springer,2000 : 404-420.
  • 6Ojala T,Pietikainen M,Maenpaa T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24( 7 ) : 971-984.
  • 7Freund Y,Schapire R E.A decision-theoretic generalization of online learning and an application to boosting [C]//Computational Learning Theory:Eurocoh '95.[S.l.]:Springer-Verlag,1995.
  • 8Hall E,Rouge J,Wong R.Hierarchical search for image matching[C]// Proc ConJ Decision Contr, 1976:791-796.
  • 9Marr D,Poggio T.A computationd theory of human stereo vision[J]. Proc Royal Soc London, 1979,204(1156).
  • 10Gonzalez R C,Woods R E.Digital image proeessing[M].2nd ed. [S.l.] : Prentice Hall, 2002.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部