期刊文献+

二维正方形格点上自踪迹规避链的临界指数 被引量:2

Critical Exponents of SAT in Two Dimensional Square Lattice 
下载PDF
导出
摘要 用实空间中的重整化群理论 ,对二维正方形格点上的高分子模型自踪迹规避链进行了求解 .求得自踪迹规避链的相关长度指数νSAT为 0 759,格点的等效配位数 μSAT为 2 96 In this article, the critical exponents of the polymer model SAT in two dimensional square lattice have been studied with the real space renormalization theory. The results obtained are as follows: the correlation length exponent ν SAT is 0 759, and the equivalent coordination number exponent μ SAT is 2 968
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 1999年第9期769-774,共6页 Acta Physico-Chimica Sinica
基金 国家"攀登计划"项目
关键词 二维正方形格点 自踪迹规避链 临界指数 高分子 Real space renormalization group theory, Two dimensional square lattice, Self avoiding trail (SAT), Critical exponent
  • 相关文献

参考文献7

  • 1黄(田匀)译.统计物理现代教程[M].北京:北京大学出版社,1983.340.
  • 2北京大学物理系编写组.量子统计物理学[M].北京:北京大学出版社,1987.350.
  • 3湛星华 方锦清(译).统计力学(下册)[M].北京:高等教育出版社,1985.504.
  • 4丁恩勇,Communications Nonlinear Science Numerical Simulation,1996年,1卷,1期,21页
  • 5团体著者,量子统计物理学,1987年,350页
  • 6湛垦华(译),统计力学.下,1985年,504页
  • 7黄--(译),统计物理现代教程.上,1983年,340页

共引文献3

同被引文献10

  • 1RICHMOND P, LAL M. Theoretical treatment of entropic repulsions by polymers [J]. Chem Phys Lett, 1974, 24:594-596.
  • 2de GENNES P G. Conformations of polymer attached to an interface [J]. Macromolecules, 1980, 13: 1069-1075.
  • 3de QUEIROZL A, CHAVES C M Z. Cell renormalization of growth processes: True self-avoiding walks and growing animals [J]. Phys, 1980, B40: 99-104.
  • 4MEIROVITCH H. Scanning method as an unbiased simulation technique and its application to the study of self-attracting random walks [J]. Phys Rev A, 1985, 32 (6): 3699-3708.
  • 5ZIVIC I, MILJKOVIC V, MILOSEVIC S. Statistics of the two self-avoiding random walks on the three- dimensional {ractal lattices [J]. Chaos, Solitons and Fractals, 2007, 33:1157 1167.
  • 6ROBERT J. Random walks in a random environment on a strip: a renormatization group approach [J]. J Phys A: Math Theor, 2008, 41: 315001- 315002.
  • 7ROBERT J. Superdiffusion in a class of networks with marginal long-range connections[J]. Phy Rev E 2008, 78:0661061-0661069.
  • 8Ding Enyong,Communications Nonlinear Science Numerical Simulation,1996年,1卷,21页
  • 9Zhou Z C,J Phys A,1984年,17卷,2257页
  • 10Wu, DC,Liao, Q.Random walk terminally attached to wall on different lattices[J].Chinese Science Bulletin,1997,42(5):433-437. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部