期刊文献+

基于机器视觉的工件状态校正装置(英文)

STATE CORRECTION EQUIPMENT OF WORK-PIECE BASED ON MACHINE VISION
下载PDF
导出
摘要 针对一种特种工件的生产环节,提出了一种采集工件状态的视频信号,利用数字图像相似率算法校正工件状态的完整方法和装置.研究了该工件生产环节的特殊性,通过对图像相似率算法的分析,设计了一种利用数字图像相似率算法进行工件定位和偏移角度计算的实用化方法,并结合该方法设计了校正装置的结构和工作流程.实验表明该装置可以有效完成工件状态校正的功能,比以往使用纯机械方式在结构和原理上简单,算法运算更加灵活,整套装置更容易实现,而且通过简单改造就可以适应多种生产环境的需要,有比较好的应用前景. This paper presents a novel work-piece state correction method and equipment.In order to correct state,this paper illustrates the method of image similarity rate which is to carry on object location and to calculate work-piece′s deviate angle using machine vision.This method is proved to be useful and efficient in practice.This paper is innovative in three facts.First,using similarity rate of labelled images is more convenient for this purpose than the complex combination which is composed by sensors and machinery.Second,the algorithm of this method is easier to realize than other methods.Third,this equipment can fit a multi-purpose situation through flexible adjusting matching labelled image.This method can be widely used in other similar application.
作者 蔡陈赟 李霞
出处 《陕西科技大学学报(自然科学版)》 2011年第1期20-24,42,共6页 Journal of Shaanxi University of Science & Technology
关键词 机器视觉 标志图像 相似率 状态校正 machine vision labelled image similarity rate state correction
  • 相关文献

参考文献14

  • 1W. A. Yasnoff, J. K. Mui and J. Bacus. Error measures for scene segmentation[J]. Pattern Recognition,1977,9(4) :217-231.
  • 2T. Peli, D. Malah. A study of edge detection algorithms[J]. Comput. Graphics Image Process. , 1982,20:1-21.
  • 3W. Pratt. Digital image proeessing[M]. New York:Wiley-Interscience, 1991.
  • 4R. -R. Ramon. A measure of quality for evaluating methods of segmentation and edge detection[J]. Pattern recognition, 2001,34: 969-980.
  • 5Di Gesu, V. and Starovoitov, V. Distance-based functions for image comparison[J]. Pattern Recognition Letters, 1999, 20:207- 214.
  • 6D. Coquin and Ph. Bolon. Application of Baddeley's distance to dissimilarity measurement between gray scale images[J]. Pattern Recognition Letters, 2001, 22:1 483-1 502.
  • 7M. D. Levine and A. Nazif. Dynamic measurement of computer generated image segmentations[J]. IEEE Trans. PAMI-7, 1985: 155-164.
  • 8A. M. Nazif and M. D. Levine. Low level image segmentation: an expert system[J]. IEEE Trans. PAMI-6,1984: 555-577.
  • 9Y. J. Zhang and J. J. Gerbrands. Objective and quantitative segmentation evaluation and comparison[J]. Signal Processing, 1994, 39:43-54.
  • 10W. A. Yasnoff and J. W. Bacus. Scene segmentation algorithm development using error measures[J]. AOCH, 1984,6:45-58.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部