期刊文献+

Malliavin分析在下方约束最优投资组合中的应用 被引量:1

An Application of Malliavin Calculus to Optimal Portfolio with Downside Constraints
下载PDF
导出
摘要 对下方约束的最优投资模型进行推广.考虑市场参数为关于时间函数的情形下,利用Malliavin分析,刻画其带下方约束的最优投资策略. The model of optimal portfolio with downside constraint is extended.In the case of market parameters evolving in time,the optimal portfolio strategy with downside constraint is characterized by the technique of Malliavin calculus.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期115-119,共5页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金资助项目(10826098) 安徽省自然科学基金资助项目(090416225) 安徽省高校自然科学基金重点资助项目(KJ2010A037) 安徽工程大学青年科研基金资助项目(2008YQ035)
关键词 效用函数 投资策略 下方约束 Clark公式 Malliavin导数 utility function optimal portfolio downside constraint Clark's formula Malliavin derivative
  • 相关文献

参考文献8

  • 1KARATZAS 1, SHRECVE S E. Melhods of Mathematical Finance[M]. New York: Springer, 1998.
  • 2KARATZAS I, SIIRECVE S E. Browmian Motion and Slochastic Calculus[M]. New York: Springor,1991.
  • 3FEI W Y. Optimal Consumption and Por:iolio Choice wilh Ambiguity and Anzicipation[J]. Information Sciences, 2006, 177(23) : 5178 - 5190.
  • 4MALLIAVIN P, THALMAIEP. A, Stochastic Calculus of Variations in Mathematical Finance [ M ]. New York : Springer, 2000.
  • 5LAKNER P. Utility Maximization with Partial Information [J]. StochasticProccsses Appl, 1995, 56(2): 2,17-273.
  • 6LAKNER P. Optimal Trading Strategy for an Investor: the Case of Partial Information[J]. Stochastic Processes Appl, 1998. 76(1): 77-97.
  • 7I.AKNER P, NYGREN I. M. Portfolio Optimization with Downside Constra nts[J]. Mathematical Finance, 2006, 16 (2) : 282-299.
  • 8OCONE D L, KARATZAS I. A Generalized Clark Representation Formula with Applications to Optimal Portfolios[J]. Stochast Rep, 1991, 34(3/4): 187-220.

同被引文献11

  • 1Xu J, Song E, Luo Y, et al. Optimal distributed Kalman filtering fusion algorithm without invertibility of estimation error and sensor noise covariances[ J]. IEEE Signal Processing Letters, 2012, 19( 1 ) : 55 -58.
  • 2Kray D, Alem6n M, Fell A, et al. Laser - doped silicon solar cells by laser chemical processing (LCP) exceeding 20% effi- ciency[ C ]//33rd IEEE Photovoltaic Specialists Conference. San Diego: IEEE, 2008:1 -3.
  • 3Wang X, Mnsicki D. Low elevation sea- surface target tracking using IPDA type filters[ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43 (2) : 759 - 774.
  • 4Qi j, He G, Mei S, et al. Power system set membership state estimation[ C ]//IEEE Power and Energy Society General Meet- ing. San Diego: IEEE, 2012:1 -7.
  • 5Nikravan A, Shabaninia F. Fast and totally nonlinear set membership filtering application to control a 5 -DOF robot manipulator[ C]// 3rd International Symposium on Resilient Control Systems (ISRCS). Idaho Falls: IEEE, 2010:53 -57.
  • 6Chai W, Qiao J. Nonlinear system modeling and fault detection method using set membership estimation and T -S fuzzy model[ C]// 10th World Congress on Intelligent Control and Automation (WCICA). Beijing: IEEE, 2012:3 031 -3 036.
  • 7Simon D. Kalman filtering with state constraints : a survey of linear and nonlinear algorithms [ J ]. Control Theory and Applica- tions, 2010, 4(8) : 1 303 -1 318.
  • 8阮玉斌.网络化离散系统鲁棒故障检测及其在UPS中的应用[D].福州:福州大学,2009.
  • 9周东华,刘洋,何潇.闭环系统故障诊断技术综述[J].自动化学报,2013,39(11):1933-1943. 被引量:107
  • 10张家良,曹建福,高峰,韩海涛.基于非线性频谱数据驱动的动态系统故障诊断方法[J].控制与决策,2014,29(1):168-171. 被引量:10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部