期刊文献+

奇异二阶泛函微分方程积分边值问题的正解 被引量:3

Positive Solutions for Two-order Functional Differential Equations under the Integral Boundary Value Condition
下载PDF
导出
摘要 通过锥拉伸与压缩定理讨论了如下二阶泛函微分方程积分边值问题正解的存在性,其中m:(0,T)→[0,+∞)连续,并且0〈∫_0~Tm(s)ds〈1;h:(0,T)→[0,+∞)连续,可在t=0和t=T处奇异且0〈∫_0~Th(s)ds〈+∞. In this paper,by using the fixed point theorem,we studied the existence of positive solutions for two-order functional differential equations under the integral boundary value condition: where m:(0,T)→[0,+∞) is continuous and 0∫_0~T m(s)ds1;h:(0,T)→[0,+∞) is continuous which can be singular at t = 0 and t = T,and 0∫_0~T h(s)ds+∞.
出处 《应用泛函分析学报》 CSCD 2011年第1期65-72,共8页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(10871116 10671167) 山东省自然科学基金(ZR2009AL014)
关键词 二阶奇异边值问题 正解 泛函微分方程 Two-order singular boundary value problems positive solution functional differential equation
  • 相关文献

参考文献9

  • 1Ntouyas S K,Sficas Y G,P Ch.Tsamatos.An existence principle for boundary value problems for second order functional differential equations[J].Nonlinear Anal,1993,20(3):215-222.
  • 2T Gnana Bhaskar,V.Lakshmikantham,J.Vasundhara Devi,Monotone iterative technique for functional differential equations with retardation and anticipation[J].Nonlinear Anal,2007,66:2237-2242.
  • 3MA Ruyun.Positive solutions for boundary value problems of functional differential equations[J].Appl Math Compuation,2007,193:66-72.
  • 4Karakostas G L,Mavridis K G,P.Ch.Tsamatos.Multiple Positive solutions for a functional second-order boundary value problem[J].J Math Anal Appl,2003,282:567-577.
  • 5Ntouyas S K,Sficas Y G,P.Ch.Tsamatos.An existence principle for boundary value problems for second order functional differential equations[J].Nonlinear Anal,1993,20(3):215-222.
  • 6Xu Hongkun,Liz E.Boundary value problems for functional differential equations[J].Nonlinear Anal,2000,41:971-988.
  • 7WANG Haiyan.Positive periodic solutions of functional differential equations[J].J Differ Equations,2004,202(4):354-366.
  • 8Guo D,Lakshmikantham V.Nonlinear Problems in Abstract Cone[M].Academic Press,Orlando,FL (1988).
  • 9Krasnoselskii M A,Zabreiko P P.Geometrical Methods of Nonlinear Analysis[M].New York:SpringerVerlag Press,1984.

同被引文献32

  • 1Gatica J A,Oliker V,Waltman P. Singular nonlinear boundary problems for second order differential equations[J].Journal of Differential Equations,1987,(01):62-78.
  • 2Il'in V A,Moiseev E I. Nonlocal boundary-value problem of the first kind for a Sturm-Liouville operator[J].Journal of Differential Equations,1987,(08):979-987.
  • 3Il'in V A,Moiseev E I. Nonlocal boundary-value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects[J].Journal of Differential Equations,1987,(07):803-810.
  • 4Taliaferro S D. A nonlinear singular boundary value problem[J].Nonlinear Analysis,1979,(06):897-904.
  • 5Usmani R A. Auniqueness theorem for a boundary value problem[J].Proceedings of the American Mathematical Society,1979,(02):329-335.
  • 6Berezansky L,Braverman E. Positive solutions for a scalar differential equation with several delays[J].Applied Mathematics Letters,2008,(21):636-640.
  • 7Jiang D,Wang J. On boundaary value problems for singular second-order functional differential equations[J].Journal of Computational and Applied Mathematics,2000,(02):231-241.doi:10.1016/S0377-0427(99)00314-3.
  • 8Liang J,Xiao T J,Hao Z C. Positive solutions of singular differential equations on measure chains[J].Computers and Mathematics with Applications,2005,(5-6):651-663.
  • 9Liu Z,Ume J S,Anderson D R. Twin monotone positive solutions to a singuar nonlinear third-order differential equation[J].Journal of Mathematical Analysis and Applications,2007.299-313.
  • 10Ma R. Positive solution for boundary value problems of functional differential equations[J].Applied Mathematics and Computation,2007,(01):66-72.doi:10.1016/j.amc.2007.03.039.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部