摘要
通过锥拉伸与压缩定理讨论了如下二阶泛函微分方程积分边值问题正解的存在性,其中m:(0,T)→[0,+∞)连续,并且0〈∫_0~Tm(s)ds〈1;h:(0,T)→[0,+∞)连续,可在t=0和t=T处奇异且0〈∫_0~Th(s)ds〈+∞.
In this paper,by using the fixed point theorem,we studied the existence of positive solutions for two-order functional differential equations under the integral boundary value condition: where m:(0,T)→[0,+∞) is continuous and 0∫_0~T m(s)ds1;h:(0,T)→[0,+∞) is continuous which can be singular at t = 0 and t = T,and 0∫_0~T h(s)ds+∞.
出处
《应用泛函分析学报》
CSCD
2011年第1期65-72,共8页
Acta Analysis Functionalis Applicata
基金
国家自然科学基金(10871116
10671167)
山东省自然科学基金(ZR2009AL014)
关键词
二阶奇异边值问题
正解
泛函微分方程
Two-order singular boundary value problems positive solution functional differential equation