期刊文献+

广义扰动映射的上导数 被引量:1

On Coderivatives of the Generalized Perturbation Maps
下载PDF
导出
摘要 主要讨论了两集值映射和的上导数.在比标准约束品性弱的条件下得到了两个集值映射和的上导数与两集值映射上导数的和之间的包含关系,并将此结论用于讨论广义扰动映射的上导数,得到广义扰动映射的上导数的上界估计. The coderivatives of the sums of two set-valued maps are discussed. Under some mild conditions which are weaker than the normal constraint qualification, the inclusion relations between coderivatives of the sum for two set-valued maps and the sum of coderivatives of two setvalued maps are obtained. By using the calculus rules, the upper estimate for coderivatives of generalized perturbation maps are obtaind.
出处 《应用泛函分析学报》 CSCD 2011年第1期73-77,共5页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(10871216 60574073) 重庆市自然基金(2007BB6117)
关键词 集值映射 法锥 上导数 广义扰动映射 set-valued maps normal cone coderivative generalized perturbation map
  • 相关文献

参考文献7

  • 1Mordukhovich B S.Variational Analysis and Generalized Differentiation[M].Berlin:Springer-Verlag,2006.
  • 2Aubin J P,Ekeland L.Applied Nonlinear Analysis[M].New York:John Wiley,1984.
  • 3Rockafellar R T.Variational Analysis[M].Berlin:Springer-Verlag,1998.
  • 4Mordukhovich B S.Generalized differential calculus for nonsmooth and set-valued mappings[J].J Math Anal Appl,1994,183:250-288.
  • 5Jourani A,Thibault L.Chain rules for coderivatives of multivalued mappings in Banach spaces[J].Proc Amer Math Soc,1998,126(5):1479-1485.
  • 6Aubin J P,Frankowska H.Set-Valued Analysis[M].Boston:Birkhauser,1990.
  • 7Ioffe A D,Outrata J V.On metric and calmness qualification conditions in subdifferential calculus[J].Set-Valued Analysis,2008,16:199-227.

同被引文献5

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部