摘要
讨论Curto-Fialkow所给出的四阶截断复矩问题,即给一个复数序列γ≡γ^((4)):γ_(00),γ_(0)1,γ_(10),γ_(02),γ_(11),γ_(20),γ_(03),γ_(12),γ_(21),γ_(30),γ_(04),γ_(13),γ_(22),γ_(31),γ_(40),其中γ_(00)>0,γ_(ij)=y_(ji),找到一个正的Borel测度使得γ_(ij)=∫-izz^jdμ(0≤i+j≤4)成立;得到了四阶非奇异截断复矩矩阵M(2)的平坦延拓存在的充分必要条件及在特殊情况下的解,并举例进行了验证.
In this paper,Consider the quartic moment problem suggested by Curto and Fialkow,Given complex numbersγ≡γ^((4)):γ_(00),γ_(01),γ_(10),γ_(02),γ_(11),γ_(20),γ_(03),γ_(12),γ_(21),γ_(30),γ_(04),γ_(13),γ_(22),γ_(31),γ_(40),withγ_(00)0 andγ_(ij)=γ_(ji),Find a positive Borel measureμsuch thatγ_(ij)=∫Z^iZ^jdμ,(0≤i + j≤4),Examine the existence of flat extensions for nonsingular positive quartic moment matrices M(2),Give partial solutions for the nonsingular quartic moment problem and examples are provided.
出处
《应用泛函分析学报》
CSCD
2011年第1期95-99,共5页
Acta Analysis Functionalis Applicata
基金
海南省自然科学基金(110002)