期刊文献+

改进的蚂蚁聚类入侵检测方法 被引量:7

Improved Ant Clustering Intrusion Detection Method
下载PDF
导出
摘要 在现有的自适应蚂蚁聚类算法中,自适应参数的调整往往凭经验取值,从而影响聚类质量。针对该问题,提出一种利用快速模拟退火算法实现蚂蚁聚类自适应参数动态调整的改进方法。基于该算法构建的入侵检测系统无需预先指定簇的数目,也不要求满足正常行为的数目远大于入侵行为的数目等条件。对KDD CUP1999数据集的仿真实验结果表明,该算法可以得到较理想的聚类,对未知入侵有较好的检测效果。 In present adaptive ant clustering algorithms,the values of adaptive parameters are adjusted by experience,which affects clustering quality.To solve the problem,this paper proposes an improved method by using fast Simulated Annealing Algorithm(SAA) to realize dynamic adjustment of ant clustering adaptive parameters.An intrusion detection system based on the algorithm does not require pre-specification of the number of clusters,or that the number of normal behaviors is far greater than the number of intrusions.Simulation results on KDD CUP1999 dataset show that the algorithm can get better clusters,and has better detection effects on unknown intrusions.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第6期127-129,共3页 Computer Engineering
基金 江西省工业支撑计划基金资助项目(20081B01016)
关键词 入侵检测 蚂蚁聚类 蚂蚁运动模型 模拟退火 intrusion detection ant clustering Ant Movement(AM) model simulated annealing
  • 相关文献

参考文献9

二级参考文献35

  • 1Ingber L.Very fast simulated annealing [J].Math Conput Modeling,1989,12:967-973.
  • 2Arts E,Korst J.Simulated annealing and boltzmann machine[M].New York:Wiley & Sons,1989.
  • 3Kirkpatrick S,Gelatt C D,Vecchi M P.Optimization by simulated annealling[J].Science,1983,(220):671-680.
  • 4HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 5Bonabeau E, Dorigo M, Theralaz G. Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute in the Sciences of the Complexity. New York: Oxford University Press, 1999.
  • 6Dorigo M, Maniezzo V, Colomi A, Ant system: Optimization by a colony of cooperative learning approach to the traveling Agents,IEEE Trans, on Systems, Man, and Cybernetics, 1996,26(1):29-41,
  • 7Dorigo M, Gambardella LM. Ant colony system: A cooperative learning approach to the traveling salesman problem, IEEE Trans,on Evolutionary Computation, 1997,1(1):53-66.
  • 8Stutzle T, Hoos H. MAX-MIN ant systems. Future Generation Comnuter Systems. 2000 16(8):889-914.
  • 9Di Caro G, Dorigo M. AntNet: A mobile agents approach for adaptive routing, Technical Report, IRIDIA, 1997.97-12,
  • 10Holland OE, Melhuish C. Stigmergy, self-organization, and sorting in collective robotics. Artificial Life, 1999,5(5):173-202.

共引文献450

同被引文献77

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部