期刊文献+

一类非线性分数阶微分方程边值问题的正解

Positive Solution for Boundary Value Problem of Nonlinear Fractional Differential Equation
下载PDF
导出
摘要 利用锥不动点定理给出下面非线性分数阶微分方程边值问题D0α+u(t)=f(t,u(t)),0<t<1u(0)=u(1)=u′(0)=u″(0)={0正解的存在,其中3<α<4是一个实数,f:[0,1]×[0,+∞)→[0,+∞)是连续的,D0α+是一个标准的Riemann-Liouville微分. The existence and uniqueness of positive solutions of an fractional differential equation of the form D0α+ u(t) = f(t,u(t)),0 t 1 u(0) = u(1) = u′(0) = u″(0) ={0 are obtained,where 3 α 4 is a real number,f:[0,1]×[0,+ ∞) →[0,+ ∞) is continuous,and D0α + is the standard Riemann-Liouville differentiation.The proof relies on Schauder fixed point theorem.
作者 胡卫敏
出处 《中央民族大学学报(自然科学版)》 2011年第1期27-30,共4页 Journal of Minzu University of China(Natural Sciences Edition)
基金 新疆维吾尔自治区高校科研计划重点项目(No.XJEDU2008I35)
关键词 分数阶微分方程 格林函数 锥不动点定理 边值问题 fractional differential equation Green's function fixed point theorem of cone boundary-value problem
  • 相关文献

参考文献10

  • 1OLDHAM K B, SPANIER J. The Fractional calculus [ M ]. New York and London ,Academic Pree, 1974.
  • 2MANDELBROT B B. The Fractal Geometry of Nature[ M ]. Freeman, 1982.
  • 3同登科,王瑞和,杨河山.管内非Newton流体分数阶流动的精确解[J].中国科学(G辑),2005,35(3):318-326. 被引量:16
  • 4LAKSHMIKANTHAM V, LEELA S, VASUNDHARA J. Theoiy of Fractional Dynamic Systems [ D]. Cambridge Academic Publishers, Cambridge ,2009.
  • 5EIDELMAN S D, Kochubei A N. Cauchy problem for fractional diffusion equations [ J ]. J. Diff. Eqns ,2004 ,199 :211 - 255.
  • 6GEJJI V D,BABAKHANI A. Analysis of a system of fractional differential equations[ J]. J. Math. Anal. Appl. ,2004, 293:511 - 522.
  • 7ANATOLY A. KILBAS, SRIVASTAVA HARI M, JUAN J. Trujillo. Theory and applications of fractional differential equations[ M ]. Amsterdam : North-Holland Mathematics studies ,Elsevier Science B. V. ,2006.
  • 8徐明瑜,谭文长.广义二阶流体分数阶反常扩散速度场、应力场及涡旋层的理论分析[J].中国科学(A辑),2001,31(7):626-638. 被引量:19
  • 9ZHANGBING BAI,HAISHEN LU. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J. Math. Anal. Appl. ,2005,311:495-505.
  • 10DONAL O'REGAN. Theory of singular boundary value problems[ M ]. Singapore,New Jersey ,London and Hongkong, Worm Scientifc Publishing, 1994.

二级参考文献23

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部