摘要
利用锥不动点定理给出下面非线性分数阶微分方程边值问题D0α+u(t)=f(t,u(t)),0<t<1u(0)=u(1)=u′(0)=u″(0)={0正解的存在,其中3<α<4是一个实数,f:[0,1]×[0,+∞)→[0,+∞)是连续的,D0α+是一个标准的Riemann-Liouville微分.
The existence and uniqueness of positive solutions of an fractional differential equation of the form D0α+ u(t) = f(t,u(t)),0 t 1 u(0) = u(1) = u′(0) = u″(0) ={0 are obtained,where 3 α 4 is a real number,f:[0,1]×[0,+ ∞) →[0,+ ∞) is continuous,and D0α + is the standard Riemann-Liouville differentiation.The proof relies on Schauder fixed point theorem.
出处
《中央民族大学学报(自然科学版)》
2011年第1期27-30,共4页
Journal of Minzu University of China(Natural Sciences Edition)
基金
新疆维吾尔自治区高校科研计划重点项目(No.XJEDU2008I35)
关键词
分数阶微分方程
格林函数
锥不动点定理
边值问题
fractional differential equation
Green's function
fixed point theorem of cone
boundary-value problem