期刊文献+

具连续分布滞量的偶数阶向量中立型阻尼偏微分方程的H-振动性

H-oscillation of Even Order Vector Neutral Partial Differential Equations with Damped Terms and Continuously Distributed Delays
下载PDF
导出
摘要 研究一类具有阻尼项和连续分布滞量的偶数阶向量中立型偏微分方程的H-振动性,借助内积降维方法,利用Riccati变换、引入参数函数,获得该类方程在Robin,Dirichle边值条件下所有解H-振动的充分判据. The H-oscillation of a class of even order vector neutral partial differential equations with damped terms and continuously distributed delays were studied.Some criteria of sufficient conditions for the H-oscillation of all solutions of the equations were obtained under Robin and Dirichlet boundary conditions by employing the method of reducing dimension with the inner product and making use of Riccati transformation and introducing parameter functions.
作者 蔡江涛
出处 《中央民族大学学报(自然科学版)》 2011年第1期48-54,共7页 Journal of Minzu University of China(Natural Sciences Edition)
基金 湖南省教育厅计划项目(No.10C0490)
关键词 阻尼 连续分布滞量 中立型 偏微分方程 H-振动性 damping continuously distributed delay neutral type partial differential equation H-oscillation
  • 相关文献

参考文献2

二级参考文献14

  • 1王宁,王培光,孙晓玲.一类具分布式偏差变元的双曲型向量泛函微分方程解的H-振动性[J].应用泛函分析学报,2007,9(1):63-69. 被引量:8
  • 2MINCHEV E,YOSHIDA N. Oscillation of solutions of vector differential equations of parabolic type with functional arguments[J]. J Comput Appl Math, 2003, 151(1):107-117.
  • 3LI W N, HAN M A, MENG F W. H-oscillation of solutions of certain vector hyperbolic differential equations with deviating arguments[J]. Appl Math Comput,2004,158(3):637-653
  • 4LADDE G S, LAKSHMIKANTHAM V, ZHANG B G. Oscillation Theory of Differential Equations with Deviating Arguments[M]. New York: Basel Marcel Dekker Inc, 1987.
  • 5DOMSLAK Ju I. On the oscillation of solutions of vector differential equations[J]. Soviet Math Dokl, 1970 11:839-841.
  • 6COURANT R, HILBERT D. Methods of Mathematical Physics:Vol.Ⅰ[M]. New York: Interscience, 1996.
  • 7Domslak Ju I., On the oscillation of solutions of vertor differential equations, Soviet Math. Dokl., 1970, 11: 839-841.
  • 8Courant R., Hilbert D., Methods of Mathematical Physics, Vol.I, New York: Interscience, 1996.
  • 9Minchev E., Yoshida N., Oscillation of solutions of vector differential equations of parabolic type with functional arguments, J. Comput. Appl. Math., 2003, 151(1): 107-117.
  • 10Li W. N., Han M. A., Meng F. W., H-oscillation of solutions of certain vector hyperbolic differential equations with deviating arguments, Appl. Math. Comput., 2004, 156(3): 637-653.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部